Skip to main content
Log in

Life table demography of Asplanchna brightwellii Gosse, 1850 fed with five different prey items

  • ROTIFERA XIV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We conducted life table experiments on the freshwater rotifer Asplanchna brightwellii to analyze its demography when fed with prey items from several taxonomic groups (cladocerans, protozoans, and rotifers) and under two different temperature regimes (20 and 25°C); the aim of the study was to determine the preferred prey for A. brightwellii in terms of fitness (evaluated as reproductive success) among five cladoceran, protozoan, and rotifer preys, and to test which temperature (20 or 25°C) is better for life table parameters of Asplanchna. Our analysis identified Brachionus calyciflorus as the preferred prey for A. brightwellii based on life table statistics, ingestion rate and electivity indices. The greatest values for net reproductive rate and intrinsic growth rate were achieved when A. brightwellii was fed B. calyciflorus. Greater reproductive values (R o and r) were found at 25°C than at 20°C for A. brightwellii across the five prey species. We found significant differences in the ingestion rate and electivity index among zooplanktonic and benthic preys. The influence of temperature, the cost of predation, and how prey selection by A. brightwellii is influenced by: biomass, size, and swimming speed; they are discussed hoping to gain a better understanding of trophic transfers in zooplankton communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Begon, M., J. L. Harper & C. P. Townsend, 1996. Ecology: Individuals, Populations, and Communities, 3rd ed. Blackwell Scientific, Oxford.

    Book  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Castilho-Noll, M. S. M. & M. S. Arcifa, 2007. Chaoborus diet in a tropical lake and predation of microcrustaceans in laboratory experiments. Acta Limnologica Brasiliensia 19: 163–174.

    Google Scholar 

  • Chang, K. H., H. Doi, Y. Nishibe & S. Nakano, 2010. Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. Journal of Limnology 69: 209–216.

    Article  Google Scholar 

  • Chi, S. & S. B. Forrest, 2015. Linking body size and energetics with predation strategies: a game theoretic modeling framework. Ecological Modeling 316: 81–86.

    Article  Google Scholar 

  • Dahms, H. U., A. Hagiwara & J. S. Lee, 2011. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquatic Toxicology 101: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, H. J. & S. S. S. Sarma, 1995. Demography and population growth of Asplanchna girodi (Rotifera) as a function of prey (Anuraeopsis fissa) density. Hydrobiologia 306: 97–107.

    Article  CAS  Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Enríquez-García, C., S. Nandini & S. S. S. Sarma, 2009. Seasonal dynamics of zooplankton in Lake Huetzalin, Xochimilco (Mexico City, Mexico). Limnologica 39: 283–291.

    Article  Google Scholar 

  • Frontier, S., 1973. Etude statistique de la dispersion du zooplancton. Journal of Experimental Marine Biology and Ecology 12: 229–262.

    Article  Google Scholar 

  • Garza-Muriño, G., M. Silva-Briano, S. Nandini, S. S. S. Sarma & M. E. Castellanos-Páez, 2005. Morphological and morphometrical variations of selected rotifer species in response to predation: a seasonal study of selected brachionid species from Lake Xochimilco (Mexico). Hydrobiologia 516: 169–179.

    Google Scholar 

  • Gilbert, J. J., 1967. Control of sexuality in the rotifer Asplanchna brightwellii by dietary lipids of plant origin. Proceedings of the Natural Academy of Sciences of the United States of America 57: 1218–1225.

    Article  CAS  Google Scholar 

  • Gilbert, J. J., 1980. Female polymorphism and sexual reproduction in the rotifer Asplanchna: evolution of their relationship and control by dietary alpha-tocopherol. American Naturalist 116: 409–431.

    Article  Google Scholar 

  • Green, J. & O. B. Lan, 1974. Asplanchna and the spines of Brachionus calyciflorus in two Javanese sewage ponds. Freshwater Biology 4: 223–226.

    Article  Google Scholar 

  • Guo, R., T. W. Snell & J. Yang, 2010. Studies of the effect of environmental factors on the rotifer predator-prey system in freshwater. Hydrobiologia 655: 49–60.

    Article  Google Scholar 

  • Ivlev, V. S., 1961. Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven, CT.

    Google Scholar 

  • de Paggi, J., 2002. Guides to the identification of the Microinvertebrates of the Continental Waters of the World. Rotifera. Volumen 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. Backhuys Publishers, Leiden.

  • Jíménez-Contreras, J., S. S. S. Sarma, S. Nandini & A. Urquieta-Ordoñez, 2014. Effect of circadian cycle and prey density on the demography of the predator Asplanchna silvestrii (Rotifera). International Review of Hydrobiology 99: 133–140.

    Article  Google Scholar 

  • Krebs, C. J., 1985. Ecología: Estudio de la distribución y la abundancia, 2ª. Edición. Ed. Harla. México D.F., México

  • Kozlowski, J., 1992. Optimal allocation of resources to growth and reproduction: implication for age and size at maturity. Trends in Ecology and Evolution 7: 15–19.

    Article  CAS  PubMed  Google Scholar 

  • Nandini, S., R. Pérez-Chávez & S. S. S. Sarma, 2003. The effect of prey morphology on the feeding behavior and population growth of the predatory rotifer Asplanchna sieboldii: a case study using five species of Brachionus (Rotifera). Freshwater Biology 48: 2131–2140.

    Article  Google Scholar 

  • Pan, L., X. Yi-Long, C. Hong-Yuan, B. Peng & W. Jin-Xia, 2014. Combined effects of temperature and prey (Brachionus angularis) density on life table demography and population growth of Asplanchna brightwelli (Rotifera). Annales de Limnologie – International Journal of Limnology 50: 261–268.

    Article  Google Scholar 

  • Persson, A., H. Lars-Anders, C. Brönmark, P. Lundberg, L. B. Pettersson, L. Greenberg, P. A. Nilsson, P. Nyström, P. Romare & L. Tranvik, 2001. Effects of enrichment on simple aquatic food webs. The American Naturalist 157: 654–669.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Pérez, T., S. S. S. Sarma & S. Nandini, 2004. Effects of mercury on the life table demography of the Rotifer Brachionus calyciflorus Pallas (Rotifera). Ecotoxicology 13: 535–544.

    Article  PubMed  Google Scholar 

  • Rubio-Franchini, I., J. S. Mejía & R. Rico-Martínez, 2008. Determination of lead in samples of zooplankton, water, and sediments in a Mexican reservoir: evidence for lead biomagnification? Environmental Toxicology 23: 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Franchini, I. & R. Rico-Martínez, 2011. Evidence of lead biomagnification in invertebrate predators from laboratory and field experiments. Environmental Pollution 159: 1831–1835.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, R. W. & S. A. Wickham, 1993. Plantonic protozoa and metazoa: predation, food quality and population control. Marine Microbial Food Webs 7: 197–223.

    Google Scholar 

  • Santos-Medrano, G. E., R. Rico-Martínez & C. A. Velázquez-Rojas, 2001. Swimming speed and Reynolds numbers of eleven freshwater rotifer species. Hydrobiologia 446(447): 35–38.

    Article  Google Scholar 

  • Sarma, S. S. S., 1993. Feeding responses of Asplanchna brightwellii (rotifera): laboratory and field studies. Hydrobiologia 255(256): 275–282.

    Article  Google Scholar 

  • Sarma, S. S. S., S. Nandini & H. J. Dumont, 1998. Feeding preference and population growth of Asplanchna brightwelli (Rotifera) offered two non-evasive prey rotifers. Hydrobiologia 361: 77–87.

    Article  Google Scholar 

  • Sarma, S. S. S., E. L. Pavón-Meza & S. Nandini, 2003. Comparative population growth and life table demography of the rotifer Asplanchna girodi at different prey (Brachionus calyciflorus and Brachionus havanaensis) (Rotifera) densities. Hydrobiologia 491: 309–320.

    Article  Google Scholar 

  • Sarma, S. S. S. & S. Nandini, 2007. Small prey size offers immunity to predation: a case study on two species of Asplanchna and three brachionid prey (Rotifera). Hydrobiologia 593: 67–76.

    Article  Google Scholar 

  • Sarma, S. S. S., G. García-Martínez & S. Nandini, 2007. Population growth of Asplanchna brightwellii (Rotifera) fed prey species having different morphological defenses. Journal of Freshwater Ecology 22: 667–676.

    Article  Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1984. Body size, ration level, and population growth in Asplanchna. Oecologia 64: 355–359.

    Article  PubMed  Google Scholar 

  • Walsh, E. J., R. L. Wallace & R. J. Shiel, 2005. Toward a better understanding of the phylogeny of the Asplanchnidae (Rotifera). Hydrobiologia 546: 71–80.

    Article  CAS  Google Scholar 

  • Walz, N., 1995. Rotifer populations in plankton communities: energetics and life history strategies. Experientia 51: 437–453.

    Article  CAS  Google Scholar 

  • Widbon, B., 1984. Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna. Marine Biology 84(101): 108.

    Google Scholar 

  • Williamson, C. E., 1987. Predator-prey interactions between omnivorous diaptomid copepods and rotifers: the role of prey morphology and behavior. Limnology and Oceanography 32: 167–177.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rico-Martínez.

Additional information

Guest editors: M. Devetter, D. Fontaneto, C. D. Jersabek, D. B. Mark Welch, L. May & E. J. Walsh / Evolving rotifers, evolving science

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Medrano, G.E., Robles-Vargas, D., Hernández-Flores, S. et al. Life table demography of Asplanchna brightwellii Gosse, 1850 fed with five different prey items. Hydrobiologia 796, 169–179 (2017). https://doi.org/10.1007/s10750-016-3069-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3069-z

Keywords

Navigation