Skip to main content

Advertisement

Log in

Feeding ecology and niche segregation of the spider crab Libinia ferreirae (Decapoda, Brachyura, Majoidea), a symbiont of Lychnorhiza lucerna (Cnidaria, Scyphozoa, Rhizostomeae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Feeding strategies provide essential information to help understand symbiotic relationships and resource competition as well as environmental integrity. This study examined the feeding ecology of the spider crab Libinia ferreirae, which is commonly associated with the jellyfish Lychnorhiza lucerna during part of its life cycle, especially the juvenile stage. In the adult phase, the crab is a host for many epibionts that live on its carapace. The crabs were collected in 1 year, and the stomach contents were analyzed by the percentage points and the frequency of occurrence of the food items. We identified ten food items (food in the advanced stage of digestion was unidentifiable) and microplastic particles in the gastric contents of the crabs. The food items with high abundances were sediment, crustaceans, and cnidarians. We found niche partitioning of the spider crab’s diet during the benthic (free-living) and planktonic (L. lucerna association) phases. The fact that microplastic is part of the diet of L. ferreirae is concerning and shows how environmental contamination with plastic material has been incorporated into the marine food chain as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrés, M., A. Estévez, K. Anger & G. Rotllant, 2008. Developmental patterns of larval growth in the edible spider crab, Maja brachydactyla (Decapoda: Majidae). Journal of Experimental Marine Biology and Ecology 357(1): 35–40.

    Google Scholar 

  • Barros, S., V. J. Cobo & A. Fransozo, 2008. Feeding habits of the spider crab Libinia spinosa H. Milne Edwards, 1834 (Decapoda, Brachyura) in Ubatuba Bay, São Paulo, Brazil. Brazilian Archives of Biology and Technology 51(2): 413–417.

    Google Scholar 

  • Bolla Jr., E. A. & M. L. Negreiros-Fransozo, 2016. Morphology of juvenile phase of Achelous spinimanus (Latreille, 1819) (Crustacea, Decapoda, Portunidae) reared in laboratory. Journal of the Marine Biological Association of the United Kingdom 03: 615–631.

    Google Scholar 

  • Branco, J. O. & J. R. Verani, 1997. Dinâmica da alimentação natural de Callinectes danae Smith (Decapoda) na Lagoa da Conceição Florianópolis, Santa Catarina, Brasil. Revista Brasileira de Zoologia 14: 1003–1018.

    Google Scholar 

  • Browne, M. A., A. J. Underwood, M. G. Chapman, R. Williams, R. C. Thompson & J. A. van Franeker, 2015. Linking effects of anthropogenic debris to ecological impacts. Proceedings of the Royal Society B: Biological Sciences 282: 2014–2929.

    Google Scholar 

  • Brusca, R. & G. Brusca, 2007. Invertebrados, 2nd ed. Guanabara Koogan S.A, Rio de Janeiro.

    Google Scholar 

  • Cole, M., P. Lindeque, E. Fileman, C. Halsband, R. Goodhead, J. Moger & T. S. Galloway, 2013. Microplastic ingestion by zooplankton. Environmental Science & Technology 47(12): 6646–6655.

    CAS  Google Scholar 

  • Devriese, L., M. van der Meulen, T. Maes, K. Bekaert, I. Paul-Pont, L. Frére, J. Robbens & A. Vethaak, 2015. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Marine Pollution Bulletin 98: 179–187.

    CAS  PubMed  Google Scholar 

  • Diegues, A. C., 1987. Conservação e desenvolvimento sustentado de ecossistemas litorâneos no Brasil. Secretaria do Meio Ambiente, São Paulo.

    Google Scholar 

  • Ennis, G. P., 1973. Food, feeding, and condition of lobsters, Homarus americanus, throughout the seasonal cycle in Bonavista Bay, Newfoundland. Journal of the Fisheries Research Board of Canada 30: 1905–1909.

    Google Scholar 

  • Fonteles-Filho, A. A., 2011. Oceanografia, biologia e dinâmica populacional de recursos pesqueiros. Expressão Gráfica, Fortaleza.

    Google Scholar 

  • Foucreau, N., D. Cottin, C. Piscart & F. Hervant, 2014. Physiological and metabolic responses to rising temperature in Gammarus pulex (Crustacea) populations living under continental or Mediterranean climates. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 168: 69–75.

    CAS  Google Scholar 

  • Gonçalves, G. R. L., M. R. Wolf, R. C. Costa & A. L. Castilho, 2016. Decapod crustacean associations with scyphozoan jellyfish (Rhizostomeae: Pelagiidae) in the Southeastern Brazilian coast. Symbiosis 69: 193–198.

    Google Scholar 

  • Gonçalves, G. R. L., R. C. Grabowski, G. L. Bochini, R. C. Costa & A. L. Castilho, 2017a. Ecology of the spider crab Libinia ferreirae (Brachyura: Majoidea): ontogenetic shifts in habitat use. Hydrobiologia 795: 313–325.

    Google Scholar 

  • Gonçalves, G. R. L., E. A. Bolla Jr., M. L. Negreiros-Fransozo & A. L. Castilho, 2017b. Morphometric and gonadal maturity of the spider crab Libinia ferreirae Brito Capello, 1871 (Decapoda: Majoidea: Epialtidae) at Southeastern Brazilian coast. Journal of the Marine Biological Association of the United Kingdom 97(2): 289–295.

    Google Scholar 

  • González- Carman, V., F. Botto, E. Gaitán, D. Albareda, C. Campagna & H. Mianzan, 2014. A jellyfish diet for the herbivorous green turtle Chelonia mydas in the temperate SW Atlantic. Marine Biology 161: 339–349.

    Google Scholar 

  • Gregory, M. R., 2009. Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526): 2013–2025.

    Google Scholar 

  • Guerao, G. & G. Rotllant, 2009. Survival and growth of post-settlement juveniles of the spider crab Maja brachydactyla (Brachyura: Majoidea) reared under individual culture system. Aquaculture 289(1): 181–184.

    Google Scholar 

  • Guinot, D. & J. M. Bouchard, 1998. Evolution of the abdominal holding systems of brachyuran crabs (Crustacea, Decapoda, Brachyura). Zoosystema 20: 613–694.

    Google Scholar 

  • Haefner Jr., P. A., 1990a. Natural diet of Callinectes ornatus (Brachyura: Portunidae) in Bermuda. Journal of Crustacean Biology 10(2): 236–246.

    Google Scholar 

  • Haefner Jr., P. A., 1990b. Morphometry and size at maturity of Callinectes ornatus (Brachyura, Portunidae) in Bermuda. Bulletin of Marine Science 46(2): 274–286.

    Google Scholar 

  • Hartnoll, R. G., 1982. Growth. In Bliss, D. E. (ed.), The Biology of Crustacea: Embryology, Morphology and Genetics. Academic Press, New York: 111–196.

    Google Scholar 

  • Hidalgo-Ruz, V., L. Gutow, R. Thompson & M. Thiel, 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology 46: 3060–3075.

    CAS  Google Scholar 

  • Hultgren, K. & J. Stachowicz, 2011. Camouflage in decorator crabs. In Stevens, M. & S. Merilaita (eds), Animal Camouflage: Mechanisms and Function. Cambridge University Press, Cambridge: 214–238.

    Google Scholar 

  • Hyslop, E. J., 1980. Stomach contents analysis — a review of methods and their application. Journal of Fish Biology 17(4): 411–429.

    Google Scholar 

  • Ingram, B. A., K. A. Pitt & P. Barnes, 2017. Stable isotopes reveal a potential kleptoparasitic relationship between an ophiuroid (Ophiocnemis marmorata) and the semaeostome jellyfish, Aurelia aurita. Journal of Plankton Research 39(1): 138–146.

    CAS  Google Scholar 

  • Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan & K. L. Law, 2015. Plastic waste inputs from land into the ocean. Science 347(6223): 768–771.

    CAS  PubMed  Google Scholar 

  • Lönnstedt, O. M. & P. Eklöv, 2016. Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352(6290): 1213–1216.

    PubMed  Google Scholar 

  • Lusher, A. L., G. Hernandez-Milian, J. O’Brien, S. Berrow, I. O’Connor & R. Officer, 2015. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the True’s beaked whale Mesoplodon mirus. Environmental Pollution 199: 185–191.

    CAS  PubMed  Google Scholar 

  • Mantelatto, F. L. M. & R. A. Christofoletti, 2001. Natural feeding activity of the crab Callinectes ornatus (Portunidae) in Ubatuba Bay (São Paulo, Brazil): influence of season, sex, size and molt stage. Marine Biology 138(3): 585–594.

    Google Scholar 

  • Mariscal, R., 1974. Nematocysts. In Musatine, L. & H. Lenhoff (eds), Coelenterate Biology: Reviews and New Perspectives. Academic Press, New York: 129–178.

    Google Scholar 

  • Masuda, R., Y. Yamashita & M. Matsuyama, 2008. Jack mackerel Trachurus japonicus juveniles use jellyfish for predator avoidance and as a prey collector. Fisheries Science 74(2): 276–284.

    CAS  Google Scholar 

  • McLaughlin, P. A. & J. F. Herbard, 1961. Stomach contents of the Bering Sea king crab. Bulletin of the International North Pacific Fish Commission 5: 5–8.

    Google Scholar 

  • Melo, G. A. S., 1996. Manual de identificação dos Brachyura (caranguejos e siris) do litoral brasileiro. FAPESP, São Paulo.

    Google Scholar 

  • Mendonça, J. T., J. R. Verani & N. Nordi, 2010. Evaluation and management of blue crab Callinectes sapidus (Rathbun, 1896) (Decapoda - Portunidae) fishery in the Estuary of Cananéia, Iguape and Ilha Comprida, São Paulo, Brazil. Brazilian Journal of Biology 70: 37–45.

    Google Scholar 

  • Moore, C. J., 2008. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental Research 108(2): 131–139.

    CAS  PubMed  Google Scholar 

  • Murray, F. & P. R. Cowie, 2011. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin 62(6): 1207–1217.

    CAS  PubMed  Google Scholar 

  • Nagata, R. M., M. Z. Moreira, C. R. Pimentel & A. C. Morandini, 2015. Food web characterization based on δ15 N and δ13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Marine Ecology Progress Series 519: 13–27.

    CAS  Google Scholar 

  • Nagata, R. M., A. C. Morandini, S. P. Colin, A. E. Migotto & J. H. Costello, 2016. Transitions in morphologies, fluid regimes, and feeding mechanisms during development of the medusa Lychnorhiza lucerna. Marine Ecology Progress Series 557: 145–159.

    Google Scholar 

  • Ohtsuka, S., K. Koike, D. Lindsay, J. Nishikawa, H. Miyake, M. Kawahara, H. Mulyadi, N. Mujiono, J. Hiromi & H. Komatsu, 2009. Symbionts of marine medusae and ctenophores. Plankton Benthos Research 4: 1–13.

    Google Scholar 

  • Paul, R. K. G., 1981. Natural diet, feeding and predatory activity of the crabs Callinectes arcuatus and C. toxotes (Decapoda, Brachyura, Portunidae). Marine Ecology Progress Series 6: 91–99.

    Google Scholar 

  • Port, D., J. A. Alvarez Perez & J. T. de Menezes, 2016. The evolution of the industrial trawl fishery footprint off southeastern and southern Brazil. Latin American Journal of Aquatic Research 44(5): 908–925.

    Google Scholar 

  • Queirolo, D., R. Wahrlich, R. Molina, J. Munari-Faccin & P. R. Pezzuto, 2016. Industrial double rig trawl fisheries in the southeastern and southern Brazil: characterization of the fleet, nets and trawl simulation. Latin American Journal of Aquatic Research 44(5): 898–907.

    Google Scholar 

  • Reigada, A. L. D. & M. L. Negreiros-Fransozo, 2001. Feeding activity of Callinectes ornatus Ordway, 1863 and Callinectes danae Smith, 1869 (Crustacea, Brachyura, Portunidae) in Ubatuba, SP, Brazil. Hydrobiologia 449: 249–252.

    Google Scholar 

  • Rochman, C. M., E. Hoh, B. T. Hentschel & S. Kaye, 2013a. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environmental Science & Technology 47(3): 1646–1654.

    CAS  Google Scholar 

  • Rochman, C. M., M. A. Browne, B. S. Halpern, B. T. Hentschel, E. Hoh, H. K. Karapanagioti, L. M. Rios-Mendoza, H. Takada, S. The & R. C. Thompson, 2013b. Policy: classify plastic waste as hazardous. Nature 494(7436): 169–171.

    CAS  PubMed  Google Scholar 

  • Ruppert, E. E., R. S. Fox & R. D. Barnes, 2005. Zoologia dos Invertebrados, 7th ed. Roca, São Paulo.

    Google Scholar 

  • Sal Moyano, M. P., A. Schiariti, D. A. Gilberto, L. Diaz Briz, M. A. Gavio & H. W. Miazan, 2012. The symbiotic relationship between Lychnorhiza lucerna (Scyphozoa, Rhizostomeae) and Libinia spinosa (Decapoda, Epialtidae) in the Río de la Plata (Argentina-Uruguay). Marine Biology 159: 1933–1941.

    Google Scholar 

  • Siikavuopio, S. I. & P. James, 2015. Effects of temperature on feed intake, growth and oxygen consumption in adult male king crab Paralithodes camtschaticus held in captivity and fed manufactured diets. Aquaculture Research 46(3): 602–608.

    CAS  Google Scholar 

  • Stevens, B. G., D. A. Armstrong & R. Cusimano, 1982. Feeding habits of the Dungeness crab Cancer magister as determined by the Index of Relative Importance. Marine Biology 72: 135–145.

    Google Scholar 

  • Tavares, M. & W. Santana, 2012. On the morphological differentiation between Libinia spinosa and L. ferreirae (Crustacea: Brachyura: Majoidea: Epialtidae). Zoologia 29(6): 577–588.

    Google Scholar 

  • Thompson, R. C., 2006. Plastic debris in the marine environment: consequences and solutions. In Krause, J. C., H. Nordheim & S. Bräger (eds), Marine Nature Conservation in Europe. Federal Agency for Nature Conservation, Stralsund: 107–115.

    Google Scholar 

  • Tuthill, J., 2016. How crabs enjoy a hot meal. PLoS Biology 13: e1002265.

    Google Scholar 

  • Ugolini, A., G. Ungherese, M. Ciofini, A. Lapucci & M. Camaiti, 2013. Microplastic debris in sand hoppers. Estuarine, Coastal and Shelf Science 129: 19–22.

    CAS  Google Scholar 

  • Watts, A. J. R., C. Lewis, R. M. Goodhead, S. J. Beckett, J. Moger, C. R. Tyler & T. S. Galloway, 2014. Uptake and retention of microplastics by the shore crab Carcinus maenas. Environmental Science & Technology 48(15): 8823–8830.

    CAS  Google Scholar 

  • Watts, A. J., M. A. Urbina, S. Corr, C. Lewis & T. S. Galloway, 2015. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environmental Science & Technology 49(24): 14597–14604.

    CAS  Google Scholar 

  • Welden, N. & P. Cowie, 2016. Environment and gut morphology influence microplastic retention in langoustine, Nephrops norvegicus. Environmental Pollution 214: 859–865.

    CAS  PubMed  Google Scholar 

  • Williams, M. J., 1981. Methods for analysis of natural diet in portunid crabs (Crustacea: Decapoda: Portunidae). Journal of Experimental Marine Biology 52(1): 103–113.

    Google Scholar 

  • Winter, V. C. & S. Masunari, 2006. Macroepizoismo em Libinia ferreirae (Crustacea, Brachyura, Majidae). Iheringia, Série Zoologia 96(2): 135–140.

    Google Scholar 

  • Wójcik-Fudalewska, D., M. Normant-Saremba & P. Anastácio, 2016. Occurrence of plastic debris in the stomach of the invasive crab Eriocheir sinensis. Marine Pollution Bulletin 113(1): 306–311.

    PubMed  Google Scholar 

  • Wright, S. L., R. C. Thompson & T. S. Galloway, 2013. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution 178: 483–492.

    CAS  PubMed  Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis. Pratice-Hall, Upper Saddle River.

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - CIMAR II 23038.004310/2014-85; the Fundação de Amparo à Pesquisa do Estado de São Paulo (Biota/FAPESP) - 2010/50188-8, 2014/13770-1, 2018/01659-0; and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Research Scholarships PQ) - 303371/2011-0, 311034/2018-7. We thank colleagues from the “Núcleo de Estudos em Biologia, Ecologia e Cultivo de Crustáceos” (NEBECC group) and Dr. Eduardo Antonio Bolla Jr. for helping in the techniques of statistical analysis. We appreciate permission by “Instituto Chico Mendes de Conservação da Biodiversidade” (ICMBio) to collect the medusae and crabs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Leão Castilho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Juan Carlos Molinero

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, G.R.L., Negreiros-Fransozo, M.L., Fransozo, A. et al. Feeding ecology and niche segregation of the spider crab Libinia ferreirae (Decapoda, Brachyura, Majoidea), a symbiont of Lychnorhiza lucerna (Cnidaria, Scyphozoa, Rhizostomeae). Hydrobiologia 847, 1013–1025 (2020). https://doi.org/10.1007/s10750-019-04158-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04158-0

Keywords

Navigation