Skip to main content

Advertisement

Log in

Pyroptosis in stroke-new insights into disease mechanisms and therapeutic strategies

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Stroke is a common disease with high mortality and disability worldwide. Different forms of cell deaths, including apoptosis and necrosis, occur in ischemic or hemorrhagic brain tissue, among which pyroptosis, a newly discovered inflammation-related programmed cell death, is generally divided into two main pathways, the canonical inflammasome pathway and the non-canonical inflammasome pathway. Caspase-mediated pyroptosis requires the assembly of inflammasomes such as NLRP3, which leads to the release of inflammatory cytokines IL-1β and IL-18 through the pores formed in the plasma membrane by GSDMD followed by neuroinflammation. Recently, pyroptosis and its relationship with inflammation have attracted more and more attention in the study of cerebral ischemia or hemorrhage. In addition, many inhibitors of pyroptosis targeting caspase, NLRP3, and the upstream pathway have been found to reduce brain tissue damage after stroke. In this review, we mainly introduce the pathology of stroke, the molecular mechanism, and process of pyroptosis, as well as the pivotal roles of pyroptosis in stroke, in order to provide new insights for the treatment of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Phipps MS, Cronin CA (2020) Management of acute ischemic stroke. BMJ (Clin Res Ed) 368:l6983

    Google Scholar 

  2. Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, Bitto A, Crea G, Pisani A, Squadrito F, Trichilo V, Bruschetta D, Micali A, Altavilla D (2016) ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Med Cell Longev 2016:2183026

    Article  Google Scholar 

  3. Bonaventura, Aldo, Luca Liberale, Alessandra Vecchié, Matteo Casula, Federico Carbone, Franco Dallegri, and Fabrizio Montecucco (2016) Update on inflammatory biomarkers and treatments in ischemic stroke Int J Mol Sci 17

  4. Barrington J, Lemarchand E, Allan SM (2017) A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol 27:205–212

    Article  PubMed  PubMed Central  Google Scholar 

  5. Man SM, Karki R, Kanneganti T-D (2017) Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277:61–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kesavardhana, Sannula, R. K. Subbarao Malireddi, Thirumala-Devi Kanneganti (2020) Caspases in cell death, inflammation, and gasdermin-induced pyroptosis Annu Rev Immunol

  7. Peisker T, Koznar B, Stetkarova I, Widimsky P (2017) Acute stroke therapy: A review. Trends Cardiovasc Med 27:59–66

    Article  PubMed  Google Scholar 

  8. Barthels, Derek, Hiranmoy Das (2018) Current advances in ischemic stroke research and therapies Biochim Biophys Acta Mol basis Dis 165260

  9. Jaffer H, Morris VB, Stewart D, Labhasetwar V (2011) Advances in stroke therapy. Drug Deliv Transl Res 1:409–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Stinear, Cathy M., Catherine E. Lang, Steven Zeiler, and Winston D. Byblow (2020) Advances and challenges in stroke rehabilitation Lancet. Neurol

  11. Sierra C, Coca A, Schiffrin EL (2011) Vascular mechanisms in the pathogenesis of stroke. Curr Hypertens Rep 13:200–207

    Article  PubMed  CAS  Google Scholar 

  12. Yang Q, Huang Q, Hu Z, Tang X (2019) Potential neuroprotective treatment of stroke: targeting excitotoxicity, oxidative stress, and inflammation. Front Neurosci 13:1036

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fann DY-W, Lee S-Y, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013b) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12:941–966

    Article  PubMed  CAS  Google Scholar 

  14. Vidale S, Consoli A, Arnaboldi M, Consoli D (2017a) Postischemic inflammation in acute stroke. J Clin Neurol (Seoul, Korea) 13:1–9

    Article  Google Scholar 

  15. Lambertsen KL, Finsen B, Clausen BH (2019) Post-stroke inflammation-target or tool for therapy? Acta Neuropathol 137:693–714

    Article  PubMed  Google Scholar 

  16. Luo Y, Reis C, Chen S (2019) NLRP3 inflammasome in the pathophysiology of hemorrhagic stroke: a review. Curr Neuropharmacol 17:582–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Thomas AG, O'Driscoll CM, Bressler J, Kaufmann W, Rojas CJ, Slusher BS (2014) Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochem Biophys Res Commun 443:32–36

    Article  PubMed  CAS  Google Scholar 

  18. Lasek-Bal, A., H. Jedrzejowska-Szypulka, S. Student, A. Warsz-Wianecka, K. Zareba, P. Puz, W. Bal, K. Pawletko, and J. Lewin-Kowalik (2019) The importance of selected markers of inflammation and blood-brain barrier damage for short-term ischemic stroke prognosis J Physiol Pharmacol 70

  19. Vidale, Simone, Arturo Consoli, Marco Arnaboldi, and Domenico Consoli (2017b) Postischemic Inflammation in Acute Stroke J Clin Neurol (Seoul, Korea)

  20. Li J, Cao F, Yin H-L, Huang Z-J, Lin Z-T, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakajima K, Kohsaka S (2004) Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 4:65–84

    Article  PubMed  CAS  Google Scholar 

  22. Stankovic D, Nevenka MT, Ploen R, Zipp F, Schmidt MHH (2016) Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol 131:347–363

    Article  Google Scholar 

  23. Ronaldson PT, Davis TP (2012) Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 18:3624–3644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Poh L, Kang S-W, Baik S-H, Ng GYQ, She DT, Priyanka B, Thameem Dheen S, Magnus T, Gelderblom M, Sobey CG, Koo EH, Fann DY, Arumugam TV (2019) Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun 75:34–47

    Article  PubMed  CAS  Google Scholar 

  25. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32:1677–1698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cherry JD, Olschowka JA, Kerry O'Banion M (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ji K, Akgul G, Wollmuth LP, Tsirka SE (2013) Microglia actively regulate the number of functional synapses. PLoS One 8:e56293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jha MK, Kim J-H, Song GJ, Lee W-H, Lee I-K, Lee H-W, An SSA, Kim SY, Suk K (2018) Functional dissection of astrocyte-secreted proteins: implications in brain health and diseases. Prog Neurobiol 162:37–69

    Article  PubMed  CAS  Google Scholar 

  29. Choudhury GR, Ding S (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234–244

    Article  PubMed  Google Scholar 

  30. An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, Li L, Tang M (2019) Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci 232:116599

    Article  PubMed  CAS  Google Scholar 

  31. Zhang R, Chopp M, Zhang ZG (2013) Oligodendrogenesis after cerebral ischemia. Front Cell Neurosci 7:201

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ge X-L, Wang J-L, Liu X, Zhang J, Liu C, Guo L (2019) Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett 24:37

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang D, Qian J, Zhang P, Li H, Shen H, Li X, Chen G (2019a) Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J Neurosci Res 97:645–660

    Article  PubMed  CAS  Google Scholar 

  34. Zhang R, Zhou W, Yu Z, Yang L, Liu G, Yu H, Zhou Q, Min Z, Zhang C, Wu Q, Hu X-M, Yuan Q (2019b) miR-1247-3p mediates apoptosis of cerebral neurons by targeting caspase-2 in stroke. Brain Res 1714:18–26

    Article  PubMed  CAS  Google Scholar 

  35. Hou K, Xu D, Li F, Chen S, Li Y (2019) The progress of neuronal autophagy in cerebral ischemia stroke: mechanisms, roles and research methods. J Neurol Sci 400:72–82

    Article  PubMed  Google Scholar 

  36. Klionsky, Daniel J., Amal Kamal Abdel-Aziz, Sara Abdelfatah, Mahmoud Abdellatif, Asghar Abdoli (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) Autophagy

  37. Fann DY-W, Lim Y-A, Cheng Y-L, Lok K-Z, Chunduri P, Baik S-H, Drummond GR, Thameem Dheen S, Sobey CG, Jo D-G, Chen CL-H, Arumugam TV (2018) Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol 55:1082–1096

    Article  PubMed  CAS  Google Scholar 

  38. She X, Lan B, Tian H, Tang B (2020) Cross talk between ferroptosis and cerebral ischemia. Front Neurosci 14:776

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nahirney PC, Reeson P, Brown CE (2016) Ultrastructural analysis of blood-brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J Cereb Blood Flow Metab 36:413–425

    Article  PubMed  Google Scholar 

  40. Kim H, Seo JS, Lee S-Y, Ha K-T, Choi BT, Shin Y-I, Yun YJ, Shin HK (2020a) AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain Behav Immun 87:765–776

    Article  PubMed  CAS  Google Scholar 

  41. Kim K-A, Kim D, Kim J-H, Shin Y-J, Kim E-S, Akram M, Kim E-H, Majid A, Baek S-H, Bae O-N (2020b) Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids Barriers CNS 17:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Abdul Y, Li W, Ward R, Abdelsaid M, Sherif Hafez, Guangkuo Dong, Sarah Jamil, Victoria Wolf, Maribeth H. Johnson, Susan C. Fagan, Adviye Ergul (2020) Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosi Transl Stroke Res

  43. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169

    Article  PubMed  CAS  Google Scholar 

  44. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol

  45. Vande Walle L, Lamkanfi M (2016) Pyroptosis. Curr Biol 26:R568–RR72

    Article  PubMed  CAS  Google Scholar 

  46. Herr, Deron R., Ting Yu Amelia Yam, Wan Shun Daniel Tan Sally Shuxian Koh, Wai Shiu Fred Wong, Wei-Yi Ong, Kanokporn Chayaburakul (2020) Ultrastructural characteristics of DHA-induced pyroptosis NeuroMolecular Med

  47. LaRock CN, Cookson BT (2013) Burning down the house: cellular actions during pyroptosis. PLoS Pathog 9:e1003793

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dinarello CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev

  49. Alboni, Silvia, Davide Cervia, Shuei Sugama, Bruno Conti (2010) Interleukin 18 in the CNS J Neuroinflammation

  50. Liang, Faqin, Feng Zhang, Lingling Zhang, and Wei Wei (2020) The advances in pyroptosis initiated by inflammasome in inflammatory and immune diseases Inflammation Res

  51. Lu F, Lan Z, Xin Z, He C, Guo Z, Xia X, Tu H (2020) Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J Cell Physiol 235:3207–3221

    Article  PubMed  CAS  Google Scholar 

  52. McKenzie BA, Dixit VM, Power C (2020) Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci 43:55–73

    Article  PubMed  CAS  Google Scholar 

  53. Kesavardhana S, Kanneganti T-D (2017) Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int Immunol 29:201–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tsuchiya, Kohsuke (2020) 'Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications Microbiol Immunol

  55. Frew, Bradley C., Vineet R. Joag, and Jeremy Mogridge (2012) Proteolytic processing of Nlrp1b is required for inflammasome activity PLoS Pathog

  56. Sandstrom, Andrew, Patrick S. Mitchell, Lisa Goers, Edward W. Mu, Cammie F. Lesser, and Russell E. Vance (2019) Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes Science (New York, N.Y.)

  57. Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR, Johnson DC, Ball DP, Taabazuing CY, Orth EL, Vittimberga BA, Bachovchin DA (2019) N-terminal degradation activates the NLRP1B inflammasome. Science (New York, NY)

  58. Masters, Seth L., Motti Gerlic, Donald Metcalf, Simon Preston, Marc Pellegrini, Joanne A. O'Donnell, Kate McArthur, Tracey M. Baldwin, Stephane Chevrier, Cameron J. Nowell, Louise H. Cengia, Katya J. Henley, Janelle E. Collinge, Daniel L. Kastner, Lionel Feigenbaum, Douglas J. Hilton, Warren S. Alexander, Benjamin T. Kile, and Ben A. Croker (2012) NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells Immunity

  59. Wang S, Yuan Y-H, Chen N-H, Wang H-B (2019) The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease. Int Immunopharmacol 67:458–464

    Article  PubMed  CAS  Google Scholar 

  60. Xu X, Liang Z, Ye X, Hao Q, Zhang T, Cui G, Ming Y (2018a) Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflamm Res 67:57–65

    Article  PubMed  CAS  Google Scholar 

  61. Xu Y-J, Zheng L, Hu Y-W, Wang Q (2018b) Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta 476:28–37

    Article  PubMed  CAS  Google Scholar 

  62. He Y, Hara H, Núñez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41:1012–1021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ma C, Liu S, Zhang S, Xu T, Yu X, Gao Y, Zhai C, Li C, Lei C, Fan S, Chen Y, Tian H, Wang Q, Cheng F, Wang X (2018) Evidence and perspective for the role of the NLRP3 inflammasome signaling pathway in ischemic stroke and its therapeutic potential (Review). Int J Mol Med 42:2979–2990

    PubMed  CAS  Google Scholar 

  64. Xue Y, Tuipulotu DE, Tan WH, Kay C, Man SM (2019) Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol 40:1035–1052

    Article  PubMed  CAS  Google Scholar 

  65. Hong P, Ruo-Nan G, Li F-X, Xiong X-X, Liang W-B, You Z-J, Zhang H-F (2019) NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J Neuroinflammation 16:121

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bronner DN, Abuaita BH, Chen X, Fitzgerald KA, Nuñez G, He Y, Yin X-M, O'Riordan MXD (2015) Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-sdriven mitochondrial damage. Immunity. 43:451–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Pan, Jinyu, Li Han, Jun Guo, Xuyang Wang, Dian Liu, Jingjing Tian, Mingjun Zhang, and Fengshuang An (2018) AIM2 accelerates the atherosclerotic plaque progressions in ApoE-/- mice Biochem Biophys Res Commun

  68. Yogarajah T Kien Chai Ong, David Perera, and Kum Thong Wong. 2017. 'AIM2 inflammasome-mediated pyroptosis in enterovirus A71-infected neuronal cells restricts viral replication'. Sci Rep

  69. Byrne, Brenda G., Jean-Francois Dubuisson, Amrita D. Joshi, Jenny J. Persson, and Michele S. Swanson (2013) Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection mBio

  70. Lee, Bettina L., Kathleen M. Mirrashidi, Irma B. Stowe, Sarah K. Kummerfeld, Colin Watanabe, Benjamin Haley, Trinna L. Cuellar, Michael Reichelt, and Nobuhiko Kayagaki (2018) ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages Sci Rep

  71. Miao, Edward A., Irina A. Leaf, Piper M. Treuting, Dat P. Mao, Monica Dors, Anasuya Sarkar, Sarah E. Warren, Mark D. Wewers, and Alan Aderem (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria Nat Immunol

  72. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. de Vasconcelos, Nathalia M., and Mohamed Lamkanfi (2020) Recent insights on inflammasomes, gasdermin pores, and pyroptosis Cold Spring Harb Perspect Biol 12

  74. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254

    Article  PubMed  CAS  Google Scholar 

  75. He W-t, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang Z-H, Zhong C-Q, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25:1285–1298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang D, Hu Q, Zou Y, Huang Z, Ren J, Lin Z, Gao X (2019) GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol 11:496–508

    Article  PubMed  CAS  Google Scholar 

  77. Jiang S, Hanjie G, Zhao Y, Sun L (2019) Teleost Gasdermin E Is cleaved by caspase 1, 3, and 7 and induces pyroptosis. J Immunol (Baltimore, Md: 1950) 203:1369–1382

    Article  CAS  Google Scholar 

  78. Aglietti RA, Dueber EC (2017) Recent Insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol 38:261–271

    Article  PubMed  CAS  Google Scholar 

  79. Gaidt MM, Hornung V (2016) Pore formation by GSDMD is the effector mechanism of pyroptosis. EMBO J 35:2167–2169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Qi X (2016) 'Formation of membrane pores by gasdermin-N causes pyroptosis', Science China. Life Sci 59:1071–1073

    Article  Google Scholar 

  81. Chen X, He W-T, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26:1007–1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Yang S-J, Shao G-F, Chen J-L, Gong J (2018b) The NLRP3 inflammasome: an important driver of neuroinflammation in hemorrhagic stroke. Cell Mol Neurobiol 38:595–603

    Article  PubMed  CAS  Google Scholar 

  83. Broz P (2015) Immunology: Caspase target drives pyroptosis. Nature 526:642–643

    Article  PubMed  CAS  Google Scholar 

  84. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665

    Article  PubMed  CAS  Google Scholar 

  85. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Vishva M. Dixit. (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671

    Article  PubMed  CAS  Google Scholar 

  86. Deng, Meihong, Yiting Tang, Wenbo Li, Xiangyu Wang, Rui Zhang, Xianying Zhang, Xin Zhao, Jian Liu, Cheng Tang, Zhonghua Liu, Yongzhuo Huang, Huige Peng, Lehui Xiao, Daolin Tang, Melanie J. Scott, Qingde Wang, Jing Liu, Xianzhong Xiao, Simon Watkins, Jianhua Li, Huan Yang, Haichao Wang, Fangping Chen, Kevin J. Tracey, Timothy R. Billiar, and Ben Lu. (2018) The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis Immunity

  87. Kim HM, Kim Y-M (2018) HMGB1: LPS delivery vehicle for caspase-11-mediated pyroptosis. Immunity 49:582–584

    Article  PubMed  CAS  Google Scholar 

  88. Ezquerro S, Mocha F, Frühbeck G, Guzmán-Ruiz R, Valentí V, Mugueta C, Becerril S, Catalán V, Gómez-Ambrosi J, Silva C, Salvador J, Colina I, Malagón MM, Rodríguez A (2019) Ghrelin reduces TNF-α-induced human hepatocyte apoptosis, autophagy, and pyroptosis: role in obesity-associated NAFLD. J Clin Endocrinol Metab 104:21–37

    PubMed  Google Scholar 

  89. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 113:7858–7863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lin Q-R, Li C-G, Zha Q-B, Xu L-H, Pan H, Zhao G-X, Ouyang D-Y, He X-H (2016) Gossypol induces pyroptosis in mouse macrophages via a non-canonical inflammasome pathway. Toxicol Appl Pharmacol 292:56–64

    Article  PubMed  CAS  Google Scholar 

  91. Zhang X, Zhang H (2018) Chemotherapy drugs induce pyroptosis through caspase-3-dependent cleavage of GSDME. Sci China Life Sci 61:739–740

    Article  PubMed  CAS  Google Scholar 

  92. Wang Y, Gao W, Shi X, Ding J, Wang L, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:99–103

    Article  PubMed  CAS  Google Scholar 

  93. Kost, Alicja, Daniela Kasprowska, Krzysztof Labuzek, Ryszard Wiaderkiewicz, and Bożena Gabryel (2011) Autophagy in brain ischemia Postepy Hig Med Dosw (Online)

  94. Zeng C-Y, Li C-G, Shu J-X, Xu L-H, Ouyang D-Y, Mai F-Y, Zeng Q-Z, Zhang C-C, Li R-M, He X-H (2019) ATP induces caspase-3/gasdermin E-mediated pyroptosis in NLRP3 pathway-blocked murine macrophages. Apoptosis 24:703–717

    Article  PubMed  CAS  Google Scholar 

  95. Fritsch M, Günther SD, Schwarzer R, Albert M-C, Fabian S, Paul Werthenbach J, Schiffmann LM, Stair N, Stocks H, Seeger JM, Lamkanfi M, Krönke M, Pasparakis M, Kashkar H (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575:683–687

    Article  PubMed  CAS  Google Scholar 

  96. Gram AM, Booty LM, Bryant CE (2019) Chopping GSDMD: caspase-8 has joined the team of pyroptosis-mediating caspases. EMBO J 38

  97. Dong Z, Kuang P, Pan J, Peng Q, Wang Y (2018) The possibility and molecular mechanisms of cell pyroptosis after cerebral ischemia. Neurosci Bull 34:1131–1136

    Article  PubMed  PubMed Central  Google Scholar 

  98. Manning NW, Campbell BCV, Oxley TJ, Chapot R (2014) Acute ischemic stroke: time, penumbra, and reperfusion. Stroke. 45:640–644

    Article  PubMed  Google Scholar 

  99. Gelderblom M, Sobey CG, Kleinschnitz C, Magnus T (2015) Danger signals in stroke. Ageing Res Rev 24:7782

    Article  PubMed  Google Scholar 

  100. Xu, Xiaomeng, Yongjun Jiang (2014) The Yin and Yang of innate immunity in stroke BioMed Res Int

  101. Gao L, Dong Q, Song Z, Shen F, Shi J, Li Y (2017a) NLRP3 inflammasome: a promising target in ischemic stroke. Inflamm Res 66:17–24

    Article  PubMed  CAS  Google Scholar 

  102. Sun H-s, Feng Z-p (2013) Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia. Acta Pharmacol Sin 34:24–32

    Article  PubMed  Google Scholar 

  103. Gong Z, Pan J, Shen Q, Li M, Peng Y (2018) Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation 15:242

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34:660–667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ismael S, Liang Z, Nasoohi S, Ishrat T (2018) Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci Rep 8:5971

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gao L, Dong Q, Song Z, Shen F, Shi J, Li Y (2017b) NLRP3 inflammasome: a promising target in ischemic stroke. Inflamm Res 66:17–24

    Article  PubMed  CAS  Google Scholar 

  107. Cao Y, Zhang H, Lu X, Wang J, Zhang X, Sun S, Bao Z, Tian W, Ning S, Wang L, Cui L (2020) Overexpression of MicroRNA-9a-5p ameliorates NLRP1 inflammasome-mediated ischemic injury in rats following ischemic stroke. Neuroscience 444:106–117

    Article  PubMed  CAS  Google Scholar 

  108. Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD (2009) Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab 29:534–544

    Article  PubMed  CAS  Google Scholar 

  109. Zhang M-J, Zhao Q-C, Xia M-X, Chen J, Chen Y-T, Cao X, Liu Y, Yuan Z-Q, Wang X-Y, Yun X (2020) The HDAC3 inhibitor RGFP966 ameliorated ischemic brain damage by downregulating the AIM2 inflammasome. FASEB J 34:648–662

    Article  PubMed  CAS  Google Scholar 

  110. Li Q, Dai Z, Cao Y, Wang L (2019) Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation. Biochem Biophys Res Commun 513:479–485

    Article  PubMed  CAS  Google Scholar 

  111. Liu C, Qiang F, Rong M, Wang F, Zhou C, Zhang L, Yu B, Yang Z, Fang T, Tian F (2018) Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway. Brain Res 1701:246–254

    Article  PubMed  CAS  Google Scholar 

  112. Singh V, Roth S, Veltkamp R, Liesz A (2016) HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxid Redox Signal 24:635–651

    Article  CAS  Google Scholar 

  113. Liu, Daohang, Zhi Dong, Fei Xiang, Hailin Liu, Yuchun Wang, Qian Wang, and Jiangyan Rao (2019) Dendrobium alkaloids promote neural function after cerebral ischemia-reperfusion injury through inhibiting pyroptosis induced neuronal death in both in vivo and in vitro models Neurochem Res

  114. Yang J, Liu Z, Wang C, Yang R, Rathkey JK, Pinkard OW, Shi W, Chen Y, Dubyak GR, Abbott DW, Xiao TS (2018a) Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc Natl Acad Sci U S A 115:6792–6797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yao S-T, Cao F, Chen J-L, Chen W, Fan R-M, Li G, Zeng Y-C, Jiao S, Xia X-P, Han C, Ran Q-S (2017) NLRP3 is required for complement-mediated caspase-1 and IL-1beta activation in ICH. J Mol Neurosci 61:385–395

    Article  PubMed  CAS  Google Scholar 

  116. Lin X, Ye H, Siaw-Debrah F, Pan S, He Z, Ni H, Xu Z, Jin K, Zhuge Q, Huang L (2018) AC-YVAD-CMK inhibits pyroptosis and improves functional outcome after intracerebral hemorrhage. Biomed Res Int 2018:3706047

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D, Liu F, Zhang JH, Xia Y, Tang J (2019a) The MC receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 176:1341–1356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. She Y, Shao L, Zhang Y, Hao Y, Cai Y, Cheng Z, Deng C, Liu X (2019) Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 242:112051

    Article  PubMed  CAS  Google Scholar 

  119. Ye Y, Jin T, Xu Z, Zeng Z, Ye B, Wang J, Zhong Y, Xiong X, Lijuan G (2019) Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway. Front Cell Neurosci 13:553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Qin Y-Y, Li M, Feng X, Wang J, Cao L, Shen X-K, Chen J, Sun M, Sheng R, Han F, Qin Z-H (2017) Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic Biol Med 104:333–345

    Article  PubMed  CAS  Google Scholar 

  121. Mo Z, Tang C, Li H, Lei J, Zhu L, Kou L, Li H, Luo S, Li C, Chen W, Zhang L (2020) Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci 242:117133

    Article  PubMed  CAS  Google Scholar 

  122. Li C, Wang J, Fang Y, Liu Y, Chen T, Sun H, Zhou X-F, Liao H (2016) Nafamostat mesilate improves function recovery after stroke by inhibiting neuroinflammation in rats. Brain Behav Immun 56:230–245

    Article  PubMed  CAS  Google Scholar 

  123. Li Y, Li J, Li S, Li Y, Wang X, Liu B, Qiang F, Ma S (2015) Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol 286:53–63

    Article  PubMed  CAS  Google Scholar 

  124. Fann D, Yang-Wei S, Lee Y, Manzanero S, Tang SC, Gelderblom M, Chunduri P, Bernreuther C, Glatzel M, Cheng YL, Thundyil J, Widiapradja A, Lok KZ, Foo SL, Wang YC, Li YI, Drummond GR, Basta M, Magnus T, Jo DG, Mattson MP, Sobey CG, Arumugam TV (2013a) Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 4:e790

    Article  PubMed  CAS  Google Scholar 

  125. Cao, Guosheng, Nan Jiang, Yang Hu, Yuanyuan Zhang, Guangyun Wang, Mingzhu Yin, Xiaonan Ma, Kecheng Zhou, Jin Qi, Boyang Yu, and Junping Kou (2016) Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway Int J Mol Sci 17

  126. Zhang S, Jiang L, Che F, Lu Y, Xie Z, Wang H (2017) Arctigenin attenuates ischemic stroke via SIRT1-dependent inhibition of NLRP3 inflammasome. Biochem Biophys Res Commun 493:821–826

    Article  PubMed  CAS  Google Scholar 

  127. He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 50:208–215

    Article  PubMed  CAS  Google Scholar 

  128. Qiu J, Wang M, Zhang J, Cai Q, Lu D, Li Y, Dong Y, Zhao T, Chen H (2016) The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol 40:492–500

    Article  PubMed  CAS  Google Scholar 

  129. Wang X, Li R, Wang X, Qiang F, Ma S (2015) Umbelliferone ameliorates cerebral ischemia-reperfusion injury via upregulating the PPAR gamma expression and suppressing TXNIP/NLRP3 inflammasome. Neurosci Lett 600:182–187

    Article  PubMed  CAS  Google Scholar 

  130. Qu X-Y, Zhang Y-M, Tao L-N, Gao H, Zhai J-H, Sun J-M, Song Y-Q, Zhang S-X (2019) XingNaoJing injections protect against cerebral ischemia/reperfusion injury and alleviate blood-brain barrier disruption in rats, through an underlying mechanism of NLRP3 inflammasomes suppression. Chin J Nat Med 17:498–505

    PubMed  Google Scholar 

  131. Cui H-X, Chen J-H, Li J-W, Cheng F-R, Yuan K (2018) Protection of anthocyanin from against cerebral ischemia-reperfusion injury via modulation of the TLR4/NF-κB and NLRP3 pathways. Molecules (Basel, Switzerland) 23

  132. Rabuffetti M, Sciorati C, Tarozzo G, Clementi E, Manfredi AA, Beltramo M (2000) Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J Neurosci 20:4398–4404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zhao N, Zhuo X, Lu Y, Dong Y, Ahmed ME, Tucker D, Scott EL, Zhang Q (2017) Intranasal delivery of a caspase-1 inhibitor in the treatment of global cerebral ischemia. Mol Neurobiol 54:4936–4952

    Article  PubMed  CAS  Google Scholar 

  134. Ross J, Brough D, Gibson RM, Loddick SA, Rothwell NJ (2007) A selective, non-peptide caspase-1 inhibitor, VRT-018858, markedly reduces brain damage induced by transient ischemia in the rat. Neuropharmacology 53:638–642

    Article  PubMed  CAS  Google Scholar 

  135. Hayashi Y, Jikihara I, Yagi T, Fukumura M, Ohashi Y, Ohta Y, Takagi H, Maeda M (2001) Immunohistochemical investigation of caspase-1 and effect of caspase-1 inhibitor in delayed neuronal death after transient cerebral ischemia. Brain Res 893:113–120

    Article  PubMed  CAS  Google Scholar 

  136. Ji X, Guo Y, Zhou G, Wang Y, Zhang J, Wang Z, Wang Q (2019) Dexmedetomidine protects against high mobility group box 1-induced cellular injury by inhibiting pyroptosis. Cell Biol Int 43:651–657

    Article  PubMed  CAS  Google Scholar 

  137. Guo J-M, He S, Wang L, Xu J-J, Niu X-C, Zhang L (2017) 'SIRT1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci Ther

  138. Li, Minghang, Xiaocui Tian, Ruidi An, Mei Yang, Qian Zhang, Fei Xiang, Hailin Liu, Yuchun Wang, Lu Xu, and Zhi Dong (2018a) Correction to: all-trans retinoic acid ameliorates the early experimental cerebral ischemia-reperfusion injury in rats by inhibiting the loss of the blood-brain barrier via the JNK/P38MAPK signaling pathway Neurochem Res

  139. Li X, Wang T, Zhang D, Li H, Shen H, Ding X, Chen G (2018b) Andrographolide ameliorates intracerebral hemorrhage induced secondary brain injury by inhibiting neuroinflammation induction. Neuropharmacology 141:305–315

    Article  PubMed  CAS  Google Scholar 

  140. Lai, Xinxing, Kegang Cao, Lingbo Kong, Qiang Liu, Ying Gao, Xmas study investigators (2017) Xingnaojing for Moderate-to-severe Acute ischemic Stroke (XMAS): study protocol for a randomized controlled trial Trials

  141. Liu Z, Lu G, Xu Y, Luo D, Ren Q, Wu S, Sun C (2017) Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res 63. https://doi.org/10.1111/jpi.12414

  142. Jiang C, Shi R, Chen B, Yan X, Tang G (2020) Casticin elicits inflammasome-induced pyroptosis through activating PKR/JNK/NF-κB signal in 5-8F cells. Biomed Pharmacother 123:109576–109576

    Article  PubMed  CAS  Google Scholar 

  143. Dai Y, Shen W, Chang S, Ren D, Shali S, Li C, Yang H, Huang Z, Ge J (2020) M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol S0022-2828(20):30044–30044

    Google Scholar 

  144. Zeng J, Chen Y, Ding R, Liang F, Zhenghao F, Yang S, Deng X, Xie Z, Zheng S (2017) Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation 14:119–119

    Article  PubMed  PubMed Central  Google Scholar 

  145. Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia Z-Y (2019) Lipopolysaccharide (LPS) Aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res 2019:8151836–8151836

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D, Liu F, Zhang JH, Xia Y, Tang J (2019b) The MC(4) receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 176:1341–1356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ (2016) Inflammatory Disequilibrium in Stroke. Circ Res 119:142–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Meyer D, Simon F, Denorme F, Langhauser F, Geuss E, Fluri F, Kleinschnitz C (2016) Thromboinflammation in stroke brain damage. Stroke 47:1165–1172

    Article  PubMed  Google Scholar 

  149. Anrather J, Iadecola C (2016) Inflammation and stroke: an overview. Neurotherapeutics 13:661–670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (2016ZX09101031) and (2019ZX09301-134) and China Pharmaceutical University “Double First-Class” Construction Technology Innovation Team Project (CPU2018GY23) and (CPU2018GY24) and China Pharmaceutical University “Double First-Class” Construction Graduate Education and Teaching Project (JGYB201909).

Author information

Authors and Affiliations

Authors

Contributions

X. G. and D. X. were involved in collecting information and writing a draft manuscript; F. L. and K. H. performed information consolidation and were involved in modifying article; Y. L. and W. F. were involved in selecting theme. All authors read and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Weirong Fang or Yunman Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Pyroptosis aggravates brain injury in stroke via the activation of caspase-1/4/5/11.

• Pyroptosis causes inflammation in both cerebral ischemia and intracerebral hemorrhage.

• Caspases, NLRP3, and upstream pathway of pyroptosis are potential therapeutic targets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, X., Xu, D., Li, F. et al. Pyroptosis in stroke-new insights into disease mechanisms and therapeutic strategies. J Physiol Biochem 77, 511–529 (2021). https://doi.org/10.1007/s13105-021-00817-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00817-w

Keywords

Navigation