Skip to main content

Advertisement

Log in

Evidence that NF-κB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multi-protein complexes, termed “inflammasomes,” are known to contribute to neuronal cell death and brain injury following ischemic stroke. Ischemic stroke increases the expression and activation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasome proteins and both interleukin (IL)-1β and IL-18 in neurons. In this study, we provide evidence that activation of either the NF-κB and MAPK signaling pathways was partly responsible for inducing the expression and activation of NLRP1 and NLRP3 inflammasome proteins and that these effects can be attenuated using pharmacological inhibitors of these two pathways in neurons and brain tissue under in vitro and in vivo ischemic conditions, respectively. Moreover, these findings provided supporting evidence that treatment with intravenous immunoglobulin (IVIg) preparation can reduce activation of the NF-κB and MAPK signaling pathways resulting in decreased expression and activation of NLRP1 and NLRP3 inflammasomes, as well as increasing expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and/or cerebral tissue under in vitro and in vivo ischemic conditions. In summary, these results provide compelling evidence that both the NF-κB and MAPK signaling pathways play a pivotal role in regulating the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons and brain tissue under ischemic conditions. In addition, treatment with IVIg preparation decreased the activation of the NF-κB and MAPK signaling pathways, and thus attenuated the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons under ischemic conditions. Hence, these findings suggest that therapeutic interventions that target inflammasome activation in neurons may provide new opportunities in the future treatment of ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P et al (2013) Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome- mediated neuronal death in ischemic stroke. Cell Death Dis 4:e790

    Article  CAS  PubMed  Google Scholar 

  2. Agostini L, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle- wells autoinflammatory disorder. Immunity 20:319–325

    Article  CAS  PubMed  Google Scholar 

  3. De Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29:1251–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  PubMed  Google Scholar 

  5. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  6. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T et al (2011a) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68:765–783

    Article  CAS  PubMed  Google Scholar 

  7. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erener S, Petrilli V, Kassner I, Minotti R, Castillo R, Santoro R (2012) Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes. Mol Cell 46:1–12

    Article  Google Scholar 

  9. Fink SL, Bergsbaken T, Cookson BT (2008) Anthrax lethal toxin and salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci U S A 105:4312–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamkanfi M (2011) Emerging inflammasome effector mechanisms. Nat Rev Immunol 11:213–220

    Article  CAS  PubMed  Google Scholar 

  11. Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR et al (2013) AIM2 and NLRP3 inflammasomes activate both apoptotis and pyroptotic death pathways via ASC. Cell Death Differ 20:1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abulafia DP, De Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD (2009) Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab 29:534–544

    Article  CAS  PubMed  Google Scholar 

  13. Deroide N, Li X, Lerouet D, Van Vré E, Baker L, Harrison J et al (2013) MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury. J Clin Invest 123:1176–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A et al (2015) Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 6:7360

    Article  PubMed  PubMed Central  Google Scholar 

  15. Savage CD, Lopez-Castejon G, Denes A, Brough D (2012) NLRP3-inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Front Immunol 3:288

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang N, Zhang X, Liu X, Wang H, Xue J, Yu J et al (2014) Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice. Mediat Inflamm 2014:370530. doi:10.1155/2014/370530

    Google Scholar 

  17. Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12(4):941–966

    Article  CAS  PubMed  Google Scholar 

  18. Alfonso-Loeches S, Ureña-Peralta JR, Morillo-Bargues MJ, Oliver-De La Cruz J, Guerri C (2014) Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 8:216

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burm SM, Zuiderwijk-Sick EA, ‘t Jong AE, van der Putten C, Veth J, Kondova I, Bajramovic JJ. (2015). Inflammasome-induced IL-1β secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases. J Neurosci 35(2): p.678–687.

  20. Frank MG, Weber MD, Watkins LR, Maier SF (2015) Stress sounds the alarmin: the role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain Behav Immun. doi:10.1016/j.bbi.2015.03.010

    Google Scholar 

  21. Lee HM, Kang J, Lee SJ, Jo EK (2013) Microglial activation of the NLRP3 inflammasome by the priming signals derived from macrophages infected with mycobacteria. Glia 61(3):441–452

    Article  PubMed  Google Scholar 

  22. Lippai D, Bala S, Petrasek J, Csak T, Levin I, Kurt-Jones EA, Szabo G (2013) Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J Leuko Biol 94(1):171–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lok KZ, Basta M, Manzanero S, Arumugam TV (2015) Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia. J Neuroinflammation 12:73

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nagyőszi P, Nyúl-Tóth Á, Fazakas C, Wilhelm I, Kozma M, Molnár J, Haskó J, Krizbai IA (2015) Regulation of NOD-like receptors and inflammasome activation in cerebral endothelial cells. J Neurochem. doi:10.1111/jnc.13197

    PubMed  Google Scholar 

  25. Weber MD, Frank MG, Tracey KJ, Watkins LR, Maier SF (2015) Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci 35(1):316–324

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao AP, Dong YF, Liu W, Gu J, Sun XL (2014) Nicorandil inhibits inflammasome activation and toll-like receptor-4 signal transduction to protect against oxygen-glucose deprivation-induced inflammation in BV-2 cells. CNS Neurosci Ther 20(2):147–153

    Article  CAS  PubMed  Google Scholar 

  27. Bauernfeind F, Bartok E, Rieger A, Franchi L, Núñez G, Hornung V (2011b) Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 187:613–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Budai MM, Varga A, Milesz S, Tozser J, Benko S (2013) Aloe vera Downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflamamsome in human macrophages. Mol Immunol 56:471–479

    Article  CAS  PubMed  Google Scholar 

  29. Ghonime MG, Shamaa OR, Das S, Eldomany RA, Fernandes-Alnemri T, Alnemri ES et al (2014) Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function. J Immunol 192(8):3881–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hara H, Tsuchiya K, Kawamura I, Fang R, Hernandez-Cuellar E, Shen Y et al (2013) Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol 14(12):1247–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He Q, You H, Li XM, Liu TH, Wang P, Wang BE (2012) HMGB1 promotes the synthesis of pro-IL-1β and pro-IL-18 by activation of p38 MAPK and NF-κB through receptors for advanced glycation end-products in macrophages. Asian Pac J Cancer Prev 13:1365–1370

    Article  PubMed  Google Scholar 

  32. Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu JW et al (2010) Anti-inflammatory compounds parthenolide and bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 285:9792–9802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao KC, Mogridge J (2012) Activation of the NLRP1b inflammasome by reduction of cytosolic ATP. Infect Immun 81:570–579

    Article  PubMed  Google Scholar 

  34. Liu F, Lo CF, Ning X, Kajkowski EM, Jin M, Chiriac C et al (2004) Expression of NALP1 in cerebellar granule neurons stimulates apoptosis. Cell Signal 16:1013–1021

    Article  CAS  PubMed  Google Scholar 

  35. Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W et al (2013) Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res 38(10):2072–2083

    Article  CAS  PubMed  Google Scholar 

  36. Okada M, Matsuzawa A, Yoshimura A, Ichijo H (2014) The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J Biol Chem 289(47):32926–32936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao J, Zhang H, Huang Y, Wang H, Wang S, Zhao C et al (2013) Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol 17:116–122

    Article  CAS  PubMed  Google Scholar 

  38. Widiapradja A, Vegh V, Lok KZ, Manzanero S, Thundyil J, Gelderblom M et al (2012) Intravenous immunoglobulin protects neurons against amyloid beta- peptide toxicity and ischemic stroke by attenuating multiple cell death pathways. J Neurochem 122:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arumugam TV, Tang SC, Lathia JD, Cheng A, Mughal MR, Chigurupati S et al (2007) Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci U S A 104(35):14104–14109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bruey JM, Bruey-Sadano N, Luciano F, Zhai D, Balpai R, Xu C et al (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129:45–56

    Article  CAS  PubMed  Google Scholar 

  41. Faustin B, Chen Y, Zhai D, Le Negrate G, Lartigue L, Satterthwait A et al (2009) Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci U S A 106:3935–3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao Y, Signore AP, Yin W, Cao G, Yin XM, Sun F et al (2005) Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab 25(6):694–712

    Article  CAS  PubMed  Google Scholar 

  43. Kim YS, Kim JS, Kwon JS, Jeong MH, Cho JG, Park JC, Kang JC, Ahn Y (2010) Bay-11-7082, a nuclear factor-κB inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia-reperfusion injury model. Int Heart J 51(5):348–353

    Article  CAS  PubMed  Google Scholar 

  44. Piao CS, Kim JB, Han PL, Lee JK (2003) Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 73(4):537–544

    Article  CAS  PubMed  Google Scholar 

  45. Wang ZQ, Wu DC, Huang FP, Yang GY (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res 996(1):55–66

    Article  CAS  PubMed  Google Scholar 

  46. Cheng YL, Choi Y, Seow WL, Manzanero S, Sobey CG, Jo DG, Arumugam TV (2014) Evidence that neuronal notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Res 1586:193–202

    Article  CAS  PubMed  Google Scholar 

  47. Gladbach A, van Eersel J, Bi M, Ke YD, Ittner LM (2014) ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke. J Neural Transm 121(5):543–547

    CAS  PubMed  Google Scholar 

  48. Liang J, Luan Y, Lu B, Zhang H, Luo YN, Ge P (2014) Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-κB/p65 activation. PLoS One 9(5):e96734

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu AL, Wang XW, Liu AH, Su XW, Jiang WJ, Qiu PX, Yan GM (2009) JNK and p38 were involved in hypoxia and reoxygenation-induced apoptosis of cultured rat cerebellar granule neurons. Exp Toxicol Pathol 61(2):137–143

    Article  CAS  PubMed  Google Scholar 

  50. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG et al (2007) Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104:13798–13803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Legos JJ, Erhardt JA, White RF (2001) SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res 892:70–77

    Article  CAS  PubMed  Google Scholar 

  53. Qiao Y, Wang P, Qi J, Zhang L, Gao C (2012) TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages. FEBS Lett 586:1022–1026

    Article  CAS  PubMed  Google Scholar 

  54. Zheng Y, Lilo S, Brodsky IE, Zhang Y, Medzhitov R, Marcu KB et al (2011) A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages. PLoS Pathog 7(4):e1002026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arumugam TV, Selvaraj PK, Woodruff TM, Mattson MP (2008) Targeting ischemic brain injury with intravenous immunoglobulin. Expert Opin Ther Targets 12(1):19–29

    Article  CAS  PubMed  Google Scholar 

  56. Rezaei N, Abolhassani H, Aghamohammadi A, Ochs HD (2011) Indications and safety of intravenous and subcutaneous immunoglobulin. Expert Rev Clin Immunol 7(3):301–316

    Article  CAS  PubMed  Google Scholar 

  57. Schwab I, Nimmerjahn F (2013) Intravenous immunoglobulin therapy: how does IgG modulate the immune system. Nat Rev Immunol 13(3):176–189

    Article  CAS  PubMed  Google Scholar 

  58. Leger JM, De Bleecker JL, Sommer C, Robberecht W, Saarela M, Kamienowski J et al (2013) Efficacy and safety of Privigen(®) in patients with chronic inflammatory demyelinating polyneuropathy: results of a prospective, single-arm, open-label phase III study (the PRIMA study). J Peripher Nerv Syst 18(2):130–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wasserman RL, Church JA, Stein M, Moy J, White M, Strausbaugh S et al (2012) Safety, efficacy and pharmacokinetics of a new 10% liquid intravenous immunoglobulin (IVIG) in patients with primary immunodeficiency. J Clin Immunol 32(4):663–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lok KZ, Manzanero S, Arumugam TV (2016) Neuronal low-density lipoprotein receptor-related protein 1 (LRP1) enhances the anti-apoptotic effect of intravenous immunoglobulin (IVIg) in ischemic stroke. Brain Res 1644:192–202

    Article  CAS  PubMed  Google Scholar 

  61. Widiapradja A, Santro T, Basta M, Sobey CG, Manzanero S, Arumugam TV (2014) Intravenous immunoglobulin (IVIg) provides protection against endothelial cell dysfunction and death in ischemic stroke. Exp Transl Stroke Med 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Medical Research Council Research Grants (NMRC/CG/013/2013 and NMRC-CBRG-0102/2016), NUHS Seed Fund for Basic Science Research [R-185-000-255-112] and Singapore Ministry of Education Tier 1 grants [R-185-000-285-112].

Author Contributions

DYF, PC, GRD, CGS, DGJ, CLC, and TVA conceived and designed the experiments. DYF, YLC, KZL, SHB performed experiments. DYF, STD, CGY, CLC, YAL, DGJ, STD, YAL, CLC, and TVA were involved in drafting and editing the manuscript, and interpreted primary data. YAL, STD, and CLC contributed reagents. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiruma V. Arumugam.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic supplementary material

Supplementary Figure 1

Inhibition of the NF-κB and MAPK pathways and cell death in primary cortical neurons following simulated ischemic conditions. (A and B). Representative immunoblots and quantification illustrating the effect of increasing concentrations (μM) of a NF-κB inhibitor (Bay-11-7082) on levels of p-P65 NF-κB, total NF-κB and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation for 6 h (OGD6hr). (C and D). Representative immunoblots and quantification illustrating the effect of increasing concentrations (μM) of a JNK MAPK inhibitor (SP600125) on levels of p-JNK MAPK, total JNK MAPK and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation for 6 h (OGD6hr). (E and F). Representative immunoblots and quantification illustrating the effect of increasing concentrations (μM) of a P38 MAPK inhibitor (SB203580) on levels of p-P38 MAPK, total P38 MAPK and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation for 6 h (OGD6hr). (G and H). Representative immunoblots and quantification illustrating the effect of increasing concentrations (μM) of an ERK MAPK inhibitor (U-0126) on levels of p-ERK MAPK, total ERK MAPK and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation for 6 h (OGD6hr). β-actin was used as a loading control. Data are represented as mean ± S.E.M. n = 4 cultures. *** P < 0.001 compared to control; **P < 0.01 compared to OGD6 + VehicleI; ### P < 0.001 compared to OGD6 + VehicleI (JPEG 1266 kb)

Supplementary Figure 2

Inhibition of the NF-κB and MAPK pathways and cell death in primary cortical neurons following simulated ischemic/reperfusion (I/R) conditions. (A and B). Representative immunoblots and quantification illustrating the effect of increasing concentrations (μM) of a NF-κB inhibitor (Bay-11-7082) on levels of p-P65 NF-κB, total P65 NF-κB and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation (OGD3hr) followed by neurobasal reperfusion and re-oxygenation (24 h). (C and D). Representative immunoblots and quantification illustrating the effect of increasing concentrations (μM) of a JNK MAPK inhibitor (SP600125) on levels of p-JNK MAPK, total JNK MAPK and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation (OGD3hr) followed by neurobasal reperfusion and re-oxygenation (24 h). (E and F). Representative immunoblots and quantification illustrating the effect of increasing concentrations (μM) of a P38 MAPK inhibitor (SB203580) on levels of p-P38 MAPK, total P38 MAPK and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation (OGD3hr) followed by neurobasal reperfusion and re-oxygenation (24 h). (G and H). Representative immunoblots and quantification illustrating the effect of increasing concentrations (μM) of an ERK MAPK inhibitor (U-0126) on levels of p-ERK MAPK, total ERK MAPK and cleaved caspase-3 proteins in primary cortical neurons subjected to oxygen and glucose deprivation (OGD3hr) followed by neurobasal reperfusion and re-oxygenation (24 h). β-actin was used as a loading control. Data are represented as mean ± S.E.M. n = 4 cultures. *** P < 0.001 compared to control; **P < 0.01 compared to OGD3 + R24 + VehicleI; ### P < 0.001 compared to OGD3 + R24 + VehicleI. (JPEG 1296 kb)

Supplementary Figure 3

NF-κB and MAPKs inhibitors attenuate NF-κB and MAPKs signaling in the brain following focal ischemic stroke. (A and B). Representative immunoblots and quantification illustrating increases in the activation levels of NF-κB (p-P65) and MAPKs such as p-P38, p-JNK, p-ERK and p-c-Jun in ipsilateral brain tissues following middle cerebral artery occlusion (1 h) and reperfusion (24 h). The administration of NF-κB (10 mg/kg) and MAPK inhibitors (P38 inhibitor, 10 mg/kg; JNK inhibitor, 10 mg/kg; ERK inhibitor, 10 mg/kg) significantly reduced the activation levels of NF-κB (p-P65) and MAPKs such as p-P38, p-JNK, p-ERK and p-c-Jun. β-actin was used as a loading control. Data are represented as mean ± S.E.M. n = 5–6 animals in each experimental group. *** P < 0.001 compared with SHAM; $$$ P < 0.001 compared with I/R24Hr + VehicleI. (JPEG 724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fann, D.YW., Lim, YA., Cheng, YL. et al. Evidence that NF-κB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke. Mol Neurobiol 55, 1082–1096 (2018). https://doi.org/10.1007/s12035-017-0394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0394-9

Keywords

Navigation