Skip to main content
Log in

Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Current therapies for ischemia/reperfusion are insufficient because of our poor understanding of the mechanisms of brain injury after ischemic stroke. As a vital component of the innate immune system, NLRP3 inflammasome contributes to ischemic brain injury; however, a detailed understanding of their molecular mechanisms is unknown. This study was designed to investigate the effect of nuclear factor E2-related factor-2 (Nrf2) on NLRP3 inflammasome.

Materials and methods

BV2 microglial cells were pretreated with tert-butylhydroquinone or Nrf2 CRISPR plasmid before oxygen–glucose deprivation/reoxygenation (OGDR) exposure. Then we observed the effect of Nrf2 on NLRP3 inflammasome.

Results

We identified that Nrf2 activation inhibited NLRP3 inflammasome expression and subsequent IL-1β generation. Furthermore, the activation of NLRP3 inflammasome was sensitive to the reactive oxygen species (ROS) level and Nrf2 could decrease the production of ROS. Additionally, as a Nrf2-targeted ARE gene, NADPH quinone oxidoreductase 1 was involved in the inhibition of the NLRP3 inflammasome.

Conclusion

We elucidated an inhibitory regulation of Nrf2/ARE pathway on ROS-induced NLRP3 inflammasome activation in BV2 microglial cells after OGDR exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab. 2014;34:660–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao L, Dong Q, Song Z, Shen F, Shi J, Li Y. NLRP3 inflammasome: a promising target in ischemic stroke. Inflamm Res. 2017;66:17–24.

    Article  CAS  PubMed  Google Scholar 

  3. Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 2012;28:137–61.

    Article  CAS  PubMed  Google Scholar 

  4. Prochnicki T, Mangan MS, Latz E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Res. 2016;5:1469.

    Article  Google Scholar 

  5. Kolb R, Liu GH, Janowski AM, Sutterwala FS, Zhang W. Inflammasomes in cancer: a double-edged sword. Protein Cell. 2014;5:12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jankovic D, Ganesan J, Bscheider M, Stickel N, Weber FC, Guarda G, et al. The Nlrp3 inflammasome regulates acute graft-versus-host disease. J Exp Med. 2013;210:1899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, et al. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegeneration. 2016;11:23.

    Article  Google Scholar 

  8. Ystgaard MB, Sejersted Y, Loberg EM, Lien E, Yndestad A, Saugstad OD. Early upregulation of NLRP3 in the brain of neonatal mice exposed to hypoxia-ischemia: no early neuroprotective effects of NLRP3 deficiency. Neonatology. 2015;108:211–9.

    Article  CAS  PubMed  Google Scholar 

  9. Huai W, Zhao R, Song H, Zhao J, Zhang L, Gao C, et al. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nat Commun. 2014;5:4738.

    Article  CAS  PubMed  Google Scholar 

  10. Satoh T, Kambe N, Matsue H. NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis. 2013;4:e644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubartelli A. Redox control of NLRP3 inflammasome activation in health and disease. J Leukoc Biol. 2012;92:951–8.

    Article  CAS  PubMed  Google Scholar 

  12. Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Med Cell Longev. 2016;2016:2183026.

    Article  Google Scholar 

  13. Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 2013;34:340–6.

    Article  CAS  PubMed  Google Scholar 

  14. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27:2179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol. 2017;312:L155–62.

    Article  PubMed  Google Scholar 

  16. Turley AE, Zagorski JW, Rockwell CE. The Nrf2 activator tBHQ inhibits T cell activation of primary human CD4 T cells. Cytokine. 2015;71:289–95.

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76:1485–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kovac S, Angelova PR, Holmstrom KM, Zhang Y, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochem Biophys Acta. 2015;1850:794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Investig. 2006;116:984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lambertucci F, Motino O, Villar S, Rigalli JP, de Lujan Alvarez M, Catania VA, et al. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis. Toxicol Appl Pharmacol. 2017;315:12–22.

    Article  CAS  PubMed  Google Scholar 

  21. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med. 2005;202:47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai M, Yu Z, Wang L, Song X, Zhang J, Zhang Z, et al. Tongxinluo reduces brain edema and inhibits post-ischemic inflammation after middle cerebral artery occlusion in rats. J Ethnopharmacol. 2016;181:136–45.

    Article  CAS  PubMed  Google Scholar 

  23. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287:36617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu J, Wang M, Zhang J, Cai Q, Lu D, Li Y, et al. The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol. 2016;40:492–500.

    Article  CAS  PubMed  Google Scholar 

  25. Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis. 2013;4:e790.

    Article  CAS  PubMed  Google Scholar 

  26. Yang YX, Zheng LT, Shi JJ, Gao B, Chen YK, Yang HC, et al. Synthesis of 5alpha-cholestan-6-one derivatives and their inhibitory activities of NO production in activated microglia: discovery of a novel neuroinflammation inhibitor. Bioorg Med Chem Lett. 2014;24:1222–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ka SM, Lin JC, Lin TJ, Liu FC, Chao LK, Ho CL, et al. Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation. Arthritis Res Therapy. 2015;17:331.

    Article  Google Scholar 

  28. Pan CW, Pan ZZ, Hu JJ, Chen WL, Zhou GY, Lin W, et al. Mangiferin alleviates lipopolysaccharide and d-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Eur J Pharmacol. 2016;770:85–91.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Wang H, Qian C, Tang J, Zhou W, Liu X, et al. 3-(2-Oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(1 1bH)-one (compound 1), a novel potent Nrf2/ARE inducer, protects against DSS-induced colitis via inhibiting NLRP3 inflammasome. Biochem Pharmacol. 2016;101:71–86.

    Article  CAS  PubMed  Google Scholar 

  30. Tsai PY, Ka SM, Chang JM, Chen HC, Shui HA, Li CY, Hua KF, Chang WL, Huang JJ, Yang SS, Chen A. Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic Biol Med. 2011;51:744–54.

    Article  CAS  PubMed  Google Scholar 

  31. Yang SM, Ka SM, Hua KF, Wu TH, Chuang YP, Lin YW, et al. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radic Biol Med. 2013;61:285–97.

    Article  CAS  PubMed  Google Scholar 

  32. Dong Q, Hou H, Wu J, Chen Y. The Nrf2-ARE pathway is associated with schisandrin b attenuating benzo(a)pyrene-Induced HTR cells damages in vitro. Environ Toxicol. 2016;31:1439–49.

    Article  CAS  PubMed  Google Scholar 

  33. Duan X, Li J, Li W, Xing X, Zhang Y, Zhao L, et al. Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes. Free Radic Biol Med. 2016;94:74–87.

    Article  CAS  PubMed  Google Scholar 

  34. Jin HS, Suh HW, Kim SJ, Jo EK. Mitochondrial control of innate immunity and inflammation. Immune Netw. 2017;17:77–88.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36:401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21:263–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiyun Cui or Ming Yu.

Ethics declarations

Sources of funding

This work was supported by the National Natural Science Foundation of China (Nos. 81571155 and 81571210).

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, L., Ye, X. et al. Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflamm. Res. 67, 57–65 (2018). https://doi.org/10.1007/s00011-017-1095-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1095-6

Keywords

Navigation