Skip to main content

Advertisement

Log in

Subarachnoid Hemorrhage Induces Sub-acute and Early Chronic Impairment in Learning and Memory in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) leads to significant long-term cognitive deficits, so-called the post-SAH syndrome. Existing neurological scales used to assess outcomes of SAH are focused on sensory-motor functions. To better evaluate short-term and chronic consequences of SAH, we explored and validated a battery of neurobehavioral tests to gauge the functional outcomes in mice after the circle of Willis perforation-induced SAH. The 18-point Garcia scale, applied up to 4 days, detected impairment only at 24-h time point and showed no significant difference between the Sham and SAH group. A decrease in locomotion was detected at 4-days post-surgery in the open field test but recovered at 30 days in Sham and SAH groups. However, an anxiety-like behavior undetected at 4 days developed at 30 days in SAH mice. At 4-days post-surgery, Y-maze revealed an impairment in working spatial memory in SAH mice, and dyadic social interactions showed a decrease in the sociability in SAH mice, which spent less time interacting with the stimulus mouse. At 30 days after ictus, SAH mice displayed mild spatial learning and memory deficits in the Barnes maze as they committed significantly more errors and used more time to find the escape box but still were able to learn the task. We also observed cognitive dysfunction in the SAH mice in the novel object recognition test. Taken together, these data suggest dysfunction of the limbic system and hippocampus in particular. We suggest a battery of 5 basic behavioral tests allowing to detect neurocognitive deficits in a sub-acute and chronic phase following the SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that all supporting data are available within this article and its supplemental word file.

Code Availability

Not applicable.

References

  1. International Study of Unruptured Intracranial Aneurysms I. Unruptured intracranial aneurysms--risk of rupture and risks of surgical intervention. N Engl J Med. 1998;339(24):1725–33. https://doi.org/10.1056/NEJM199812103392401.

  2. Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006;354(4):387–96. https://doi.org/10.1056/NEJMra052732.

    Article  CAS  PubMed  Google Scholar 

  3. Terpolilli NA, Brem C, Buhler D, Plesnila N. Are We Barking Up the Wrong Vessels? Cerebral Microcirculation After Subarachnoid Hemorrhage. Stroke. 2015;46(10):3014–9. https://doi.org/10.1161/STROKEAHA.115.006353.

    Article  PubMed  Google Scholar 

  4. Haug Nordenmark T, Karic T, Roe C, Sorteberg W, Sorteberg A. The post-aSAH syndrome: a self-reported cluster of symptoms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2019: 1–10. https://doi.org/10.3171/2019.1.JNS183168.

  5. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43(6):1711–37. https://doi.org/10.1161/STR.0b013e3182587839.

    Article  PubMed  Google Scholar 

  6. Yeo SS, Choi BY, Chang CH, Kim SH, Jung YJ, Jang SH. Evidence of corticospinal tract injury at midbrain in patients with subarachnoid hemorrhage. Stroke. 2012;43(8):2239–41. https://doi.org/10.1161/STROKEAHA.112.661116.

    Article  PubMed  Google Scholar 

  7. Jang SH, Choi BY, Kim SH, Chang CH, Jung YJ, Yeo SS. Injury of the corticoreticular pathway in subarachnoid haemorrhage after rupture of a cerebral artery aneurysm. J Rehabil Med. 2015;47(2):133–7. https://doi.org/10.2340/16501977-1896.

    Article  PubMed  Google Scholar 

  8. Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, et al. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci. 2009;10:103. https://doi.org/10.1186/1471-2202-10-103.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cianfoni A, Pravata E, De Blasi R, Tschuor CS, Bonaldi G. Clinical presentation of cerebral aneurysms. Eur J Radiol. 2013;82(10):1618–22. https://doi.org/10.1016/j.ejrad.2012.11.019.

    Article  PubMed  Google Scholar 

  10. Hutter BO, Gilsbach JM, Kreitschmann I. Is there a difference in cognitive deficits after aneurysmal subarachnoid haemorrhage and subarachnoid haemorrhage of unknown origin? Acta Neurochir (Wien). 1994;127(3–4):129–35. https://doi.org/10.1007/BF01808755.

    Article  CAS  Google Scholar 

  11. Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41(8):e519–36. https://doi.org/10.1161/STROKEAHA.110.581975.

    Article  PubMed  Google Scholar 

  12. Egeto P, Loch Macdonald R, Ornstein TJ, Schweizer TA. Neuropsychological function after endovascular and neurosurgical treatment of subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurosurg. 2018;128(3):768–76. https://doi.org/10.3171/2016.11.JNS162055.

    Article  PubMed  Google Scholar 

  13. Passier PE, Visser-Meily JM, Rinkel GJ, Lindeman E, Post MW. Life satisfaction and return to work after aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2011;20(4):324–9. https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.02.001.

    Article  PubMed  Google Scholar 

  14. Visser-Meily JM, Rhebergen ML, Rinkel GJ, van Zandvoort MJ, Post MW. Long-term health-related quality of life after aneurysmal subarachnoid hemorrhage: relationship with psychological symptoms and personality characteristics. Stroke. 2009;40(4):1526–9. https://doi.org/10.1161/STROKEAHA.108.531277.

    Article  PubMed  Google Scholar 

  15. Tang WK, Wang L, Kwok Chu Wong G, Ungvari GS, Yasuno F, Tsoi KKF, et al. Depression after Subarachnoid Hemorrhage: A Systematic Review. J Stroke. 2020;22(1): 11–28. https://doi.org/10.5853/jos.2019.02103.

  16. Kutlubaev MA, Barugh AJ, Mead GE. Fatigue after subarachnoid haemorrhage: a systematic review. J Psychosom Res. 2012;72(4):305–10. https://doi.org/10.1016/j.jpsychores.2011.12.008.

    Article  PubMed  Google Scholar 

  17. Buunk AM, Groen RJM, Wijbenga RA, Ziengs AL, Metzemaekers JDM, van Dijk JMC, et al. Mental versus physical fatigue after subarachnoid hemorrhage: differential associations with outcome. Eur J Neurol. 2018;25(11):1313-e113. https://doi.org/10.1111/ene.13723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rinkel GJ, Algra A. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2011;10(4):349–56. https://doi.org/10.1016/S1474-4422(11)70017-5.

    Article  PubMed  Google Scholar 

  19. Leon-Carrion J, Dominguez-Morales M del R, Barroso y Martin JM, Murillo-Cabezas F. Epidemiology of traumatic brain injury and subarachnoid hemorrhage. Pituitary. 2005;8(3–4):197–202. https://doi.org/10.1007/s11102-006-6041-5.

  20. Hop JW, Rinkel GJ, Algra A, van Gijn J. Changes in functional outcome and quality of life in patients and caregivers after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;95(6):957–63. https://doi.org/10.3171/jns.2001.95.6.0957.

    Article  CAS  PubMed  Google Scholar 

  21. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18. https://doi.org/10.1016/S0140-6736(07)60153-6.

    Article  PubMed  Google Scholar 

  22. Buunk AM, Spikman JM, Metzemaekers JDM, van Dijk JMC, Groen RJM. Return to work after subarachnoid hemorrhage: The influence of cognitive deficits. PloS one. 2019;14(8):e0220972. https://doi.org/10.1371/journal.pone.0220972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4(4):432–46. https://doi.org/10.1007/s12975-013-0257-2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Matz PG, Fujimura M, Chan PH. Subarachnoid hemolysate produces DNA fragmentation in a pattern similar to apoptosis in mouse brain. Brain Res. 2000;858(2):312–9. https://doi.org/10.1016/s0006-8993(99)02454-3.

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Mori T, Sumii T, Lo EH. Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke. 2002;33(7):1882–8. https://doi.org/10.1161/01.str.0000020121.41527.5d.

    Article  CAS  PubMed  Google Scholar 

  26. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. The Lancet. 2017;389(10069):655–66. https://doi.org/10.1016/S0140-6736(16)30668-7.

    Article  Google Scholar 

  27. Budohoski KP, Czosnyka M, Kirkpatrick PJ, Smielewski P, Steiner LA, Pickard JD-, et al. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol. 2013;9(3):152–63. https://doi.org/10.1038/nrneurol.2013.11.

  28. Hou J, Zhang JH. Does prevention of vasospasm in subarachnoid hemorrhage improve clinical outcome? No Stroke. 2013;44(6 Suppl 1):S34-6. https://doi.org/10.1161/STROKEAHA.111.000686.

    Article  PubMed  Google Scholar 

  29. Diringer MN. Controversy: does prevention of vasospasm in subarachnoid hemorrhage improve clinical outcome? Stroke. 2013;44(6 Suppl 1):S29-30. https://doi.org/10.1161/STROKEAHA.111.000008.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Conzen C, Becker K, Albanna W, Weiss M, Bach A, Lushina N, et al. The Acute Phase of Experimental Subarachnoid Hemorrhage: Intracranial Pressure Dynamics and Their Effect on Cerebral Blood Flow and Autoregulation. Transl Stroke Res. 2019;10(5):566–82. https://doi.org/10.1007/s12975-018-0674-3.

    Article  CAS  PubMed  Google Scholar 

  31. Schneider UC, Davids AM, Brandenburg S, Muller A, Elke A, Magrini S, et al. Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol. 2015;130(2):215–31. https://doi.org/10.1007/s00401-015-1440-1.

    Article  PubMed  Google Scholar 

  32. Sabri M, Lass E, Macdonald RL. Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat. 2013;2013:394036. https://doi.org/10.1155/2013/394036.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Feiler S, Friedrich B, Scholler K, Thal SC, Plesnila N. Standardized induction of subarachnoid hemorrhage in mice by intracranial pressure monitoring. J Neurosci Methods. 2010;190(2):164–70. https://doi.org/10.1016/j.jneumeth.2010.05.005.

    Article  PubMed  Google Scholar 

  34. Milner E, Holtzman JC, Friess S, Hartman RE, Brody DL, Han BH, Zipfel GJ. Endovascular perforation subarachnoid hemorrhage fails to cause Morris water maze deficits in the mouse. J Cereb Blood Flow Metab. 2014;34(9). https://doi.org/10.1038/jcbfm.2014.108.

  35. Fanizzi C, Sauerbeck AD, Gangolli M, Zipfel GJ, Brody DL, Kummer TT. Minimal Long-Term Neurobehavioral Impairments after Endovascular Perforation Subarachnoid Hemorrhage in Mice. Sci Rep. 2017;7(1):7569. https://doi.org/10.1038/s41598-017-07701-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Regnier-Golanov AS, Dundar F, Zumbo P, Betel D, Hernandez MS, Peterson LE, Lo EH, Golanov EV, Britz GW. Hippocampal transcriptome changes after subarachnoid hemorrhage in mice. Front Neurol. 2021;12:691631. https://doi.org/10.3389/fneur.2021.691631.

  37. Turan N, Heider RA, Nadeem M, Miller BA, Wali B, Yousuf S, et al. Neurocognitive Outcomes in a Cisternal Blood Injection Murine Model of Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis. 2020;29(11). https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105249.

  38. Pace A, Mitchell S, Casselden E, Zolnourian A, Glazier J, Foulkes L, et al. A subarachnoid haemorrhage-specific outcome tool. Brain. 2018;141(4):1111–21. https://doi.org/10.1093/brain/awy003.

    Article  PubMed  Google Scholar 

  39. Turan N, Miller BA, Heider RA, Nadeem M, Sayeed I, Stein DG, et al. Neurobehavioral testing in subarachnoid hemorrhage: A review of methods and current findings in rodents. J Cereb Blood Flow Metab. 2017;37(11):3461–74. https://doi.org/10.1177/0271678X16665623.

    Article  PubMed  Google Scholar 

  40. Kraeuter AK, Guest PC, Sarnyai Z. Free Dyadic Social Interaction Test in Mice. Methods Mol Biol. 2019;1916:93–7. https://doi.org/10.1007/978-1-4939-8994-2_8.

    Article  CAS  PubMed  Google Scholar 

  41. Nanegrungsunk D, Ragozzino ME, Xu HL, Haselton KJ, Paisansathan C. Subarachnoidhemorrhage in C57BL/6J mice increases motor stereotypies and compulsive-like behaviors. Neurol Res. 2021;43(3):239–51. https://doi.org/10.1080/01616412.2020.1841481.

    Article  PubMed  Google Scholar 

  42. Chung DY, Oka F, Jin G, Harriott A, Kura S, Aykan SA, Qin T, Edmiston WJ 3rd, Lee H, Yaseen MA, Sakadzic S, Boas DA, Whalen MJ, Ayata C. Subarachnoid hemorrhage leads to early and persistent functional connectivity and behavioral changes in mice. J Cereb Blood Flow Metab. 2021;41(5):975–85. https://doi.org/10.1177/0271678X20940152.

    Article  CAS  PubMed  Google Scholar 

  43. Golanov EV, Bovshik EI, Wong KK, Pautler RG, Foster CH, Federley RG, et al. Subarachnoid hemorrhage - Induced block of cerebrospinal fluid flow: Role of brain coagulation factor III (tissue factor). J Cereb Blood Flow Metab. 2018;38(5):793–808. https://doi.org/10.1177/0271678X17701157.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26(4):627–34. https://doi.org/10.1161/01.str.26.4.627 (discussion 35).

    Article  CAS  PubMed  Google Scholar 

  45. Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, et al. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke. 2009;40(7):2519–25. https://doi.org/10.1161/STROKEAHA.109.549592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Archer J. Tests for emotionality in rats and mice: a review. Anim Behav. 1973;21(2):205–35. https://doi.org/10.1016/s0003-3472(73)80065-x.

    Article  CAS  PubMed  Google Scholar 

  47. Walsh RN, Cummins RA. The Open-Field Test: a critical review. Psychol Bull. 1976;83(3):482–504.

    Article  CAS  Google Scholar 

  48. Heredia L, Torrente M, Colomina MT, Domingo JL. Assessing anxiety in C57BL/6J mice: a pharmacological characterization of the open-field and light/dark tests. J Pharmacol Toxicol Methods. 2014;69(2):108–14. https://doi.org/10.1016/j.vascn.2013.12.005.

    Article  CAS  PubMed  Google Scholar 

  49. Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev. 2002;26(1):91–104. https://doi.org/10.1016/s0149-7634(01)00041-0.

    Article  CAS  PubMed  Google Scholar 

  50. Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L, et al. A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci. 2013;33(33):13460–74. https://doi.org/10.1523/JNEUROSCI.1333-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kraeuter AK, Mashavave T, Suvarna A, van den Buuse M, Sarnyai Z. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology (Berl). 2020;237(5):1397–405. https://doi.org/10.1007/s00213-020-05467-2.

    Article  CAS  Google Scholar 

  52. Sungur AO, Stemmler L, Wohr M, Rust MB. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice. Front Behav Neurosci. 2018;12:25. https://doi.org/10.3389/fnbeh.2018.00025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patil SS, Sunyer B, Hoger H, Lubec G. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav Brain Res. 2009;198(1):58–68. https://doi.org/10.1016/j.bbr.2008.10.029.

    Article  PubMed  Google Scholar 

  54. Harrison FE, Reiserer RS, Tomarken AJ, McDonald MP. Spatial and nonspatial escape strategies in the Barnes maze. Learn Mem. 2006;13(6):809–19. https://doi.org/10.1101/lm.334306.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988;31(1):47–59.

    Article  CAS  Google Scholar 

  56. Gulinello M, Mitchell HA, Chang Q, Timothy O’Brien W, Zhou Z, Abel T, et al. Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem. 2019;165:106780. https://doi.org/10.1016/j.nlm.2018.01.001.

    Article  PubMed  Google Scholar 

  57. Silverman JL, Oliver CF, Karras MN, Gastrell PT, Crawley JN. AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology. 2013;64:268–82. https://doi.org/10.1016/j.neuropharm.2012.07.013.

    Article  CAS  PubMed  Google Scholar 

  58. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc. 2013;8(12):2531–7. https://doi.org/10.1038/nprot.2013.155.

    Article  CAS  PubMed  Google Scholar 

  59. Dai M, Reznik SE, Spray DC, Weiss LM, Tanowitz HB, Gulinello M, et al. Persistent cognitive and motor deficits after successful antimalarial treatment in murine cerebral malaria. Microbes Infect. 2010;12(14–15):1198–207. https://doi.org/10.1016/j.micinf.2010.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res. 1994;61(1):59–64. https://doi.org/10.1016/0166-4328(94)90008-6.

    Article  CAS  PubMed  Google Scholar 

  61. Hohlbaum K, Bert B, Dietze S, Palme R, Fink H, Thone-Reineke C. Systematic Assessment of Well-Being in Mice for Procedures Using General Anesthesia. J Vis Exp. 2018;133. https://doi.org/10.3791/57046.

  62. Burkholder T, Foltz C, Karlsson E, Linton CG, Smith JM. Health Evaluation of Experimental Laboratory Mice. Curr Protoc Mouse Biol. 2012;2:145–65. https://doi.org/10.1002/9780470942390.mo110217.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dudchenko PA. An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev. 2004;28(7):699–709. https://doi.org/10.1016/j.neubiorev.2004.09.002.

    Article  PubMed  Google Scholar 

  64. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34. https://doi.org/10.1016/j.jneumeth.2007.08.004.

    Article  PubMed  Google Scholar 

  65. Fujimoto M, Shiba M, Kawakita F, Liu L, Shimojo N, Imanaka-Yoshida K, et al. Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice. J Neurosurg. 2016;124(6):1693–702. https://doi.org/10.3171/2015.4.JNS15484.

    Article  CAS  PubMed  Google Scholar 

  66. Liu L, Fujimoto M, Kawakita F, Nakano F, Imanaka-Yoshida K, Yoshida T, et al. Anti-Vascular Endothelial Growth Factor Treatment Suppresses Early Brain Injury After Subarachnoid Hemorrhage in Mice. Mol Neurobiol. 2016;53(7):4529–38. https://doi.org/10.1007/s12035-015-9386-9.

    Article  CAS  PubMed  Google Scholar 

  67. Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35(10):2412–7. https://doi.org/10.1161/01.STR.0000141162.29864.e9.

    Article  CAS  PubMed  Google Scholar 

  68. Han BH, Vellimana AK, Zhou ML, Milner E, Zipfel GJ. Phosphodiesterase 5 inhibition attenuates cerebral vasospasm and improves functional recovery after experimental subarachnoid hemorrhage. Neurosurgery. 2012;70(1):178–86. https://doi.org/10.1227/NEU.0b013e31822ec2b0 (discussion 86-7).

    Article  PubMed  Google Scholar 

  69. Sasaki K, Yamamoto S, Mutoh T, Tsuru Y, Taki Y, Kawashima R. Rapamycin protects against early brain injury independent of cerebral blood flow changes in a mouse model of subarachnoid haemorrhage. Clin Exp Pharmacol Physiol. 2018;45(8):859–62. https://doi.org/10.1111/1440-1681.12950.

    Article  CAS  PubMed  Google Scholar 

  70. Mutoh T, Sasaki K, Tatewaki Y, Kunitoki K, Takano Y, Taki Y. Preceding functional tooth loss delays recovery from acute cerebral hypoxia and locomotor hypoactivity after murine subarachnoid haemorrhage. Clin Exp Pharmacol Physiol. 2018;45(4):344–8. https://doi.org/10.1111/1440-1681.12874.

    Article  CAS  PubMed  Google Scholar 

  71. Sun Y, Shen Q, Watts LT, Muir ER, Huang S, Yang GY, et al. Multimodal MRI characterization of experimental subarachnoid hemorrhage. Neuroscience. 2016;316:53–62. https://doi.org/10.1016/j.neuroscience.2015.12.027.

    Article  CAS  PubMed  Google Scholar 

  72. Chen J, Wang L, Xu H, Xing L, Zhuang Z, Zheng Y, et al. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat Commun. 2020;11(1):3159. https://doi.org/10.1038/s41467-020-16851-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deacon RM. Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc. 2006;1(2):936–46. https://doi.org/10.1038/nprot.2006.120.

    Article  PubMed  Google Scholar 

  74. Ueno H, Takahashi Y, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Effects of repetitive gentle handling of male C57BL/6NCrl mice on comparative behavioural test results. Sci Rep. 2020;10(1):3509. https://doi.org/10.1038/s41598-020-60530-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mehler MF, Petronglo JR, Arteaga-Bracho EE, Gulinello ME, Winchester ML, Pichamoorthy N, et al. Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington’s Disease-Associated Behavioral, Cellular, and Pathological Hallmarks. J Neurosci. 2019;39(10):1892–909. https://doi.org/10.1523/JNEUROSCI.2443-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deacon RM. The successive alleys test of anxiety in mice and rats. J Vis Exp. 2013;76. https://doi.org/10.3791/2705.

  77. Deacon RM, Rawlins JN. T-maze alternation in the rodent. Nat Protoc. 2006;1(1):7–12. https://doi.org/10.1038/nprot.2006.2.

    Article  PubMed  Google Scholar 

  78. Smithason S, Moore SK, Provencio JJ. Systemic administration of LPS worsens delayed deterioration associated with vasospasm after subarachnoid hemorrhage through a myeloid cell-dependent mechanism. Neurocrit Care. 2012;16(2):327–34. https://doi.org/10.1007/s12028-011-9651-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wes PD, Easton A, Corradi J, Barten DM, Devidze N, DeCarr LB, et al. Tau overexpression impacts a neuroinflammation gene expression network perturbed in Alzheimer’s disease. PloS one. 2014;9(8):e106050. https://doi.org/10.1371/journal.pone.0106050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thor DH, Wainwright KL, Holloway WR. Persistence of attention to a novel conspecific: some developmental variables in laboratory rats. Dev Psychobiol. 1982;15(1):1–8. https://doi.org/10.1002/dev.420150102.

    Article  CAS  PubMed  Google Scholar 

  81. Arakawa H, Iguchi Y. Ethological and multi-behavioral analysis of learning and memory performance in laboratory rodent models. Neurosci Res. 2018;135:1–12. https://doi.org/10.1016/j.neures.2018.02.001.

    Article  PubMed  Google Scholar 

  82. Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature. 2014;508(7494):88–92. https://doi.org/10.1038/nature13028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stevenson EL, Caldwell HK. Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur J Neurosci. 2014;40(9):3294–301. https://doi.org/10.1111/ejn.12689.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci. 2016;28:1–52. https://doi.org/10.1007/7854_2015_5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alves GJ, Palermo-Neto J. Odor cues released by Ehrlich tumor-bearing mice are aversive and induce psychological stress. Neuroimmunomodulation. 2015;22(3):121–9. https://doi.org/10.1159/000358253.

    Article  CAS  PubMed  Google Scholar 

  86. Hamasato EK, Lovelock D, Palermo-Neto J, Deak T. Assessment of social behavior directed toward sick partners and its relation to central cytokine expression in rats. Physiol Behav. 2017;182:128–36. https://doi.org/10.1016/j.physbeh.2017.10.011.

  87. Lowry CA, Jin AY. Improving the Social Relevance of Experimental Stroke Models: Social Isolation, Social Defeat Stress and Stroke Outcome in Animals and Humans. Front Neurol. 2020;11:427. https://doi.org/10.3389/fneur.2020.00427.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Valtorta NK, Kanaan M, Gilbody S, Ronzi S, Hanratty B. Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart. 2016;102(13):1009–16. https://doi.org/10.1136/heartjnl-2015-308790.

    Article  CAS  PubMed  Google Scholar 

  89. Buunk AM, Spikman JM, Veenstra WS, van Laar PJ, Metzemaekers JDM, van Dijk JMC, et al. Social cognition impairments after aneurysmal subarachnoid haemorrhage: Associations with deficits in interpersonal behaviour, apathy, and impaired self-awareness. Neuropsychologia. 2017;103:131–9. https://doi.org/10.1016/j.neuropsychologia.2017.07.015.

    Article  PubMed  Google Scholar 

  90. Graber M, Baptiste L, Mohr S, Blanc-Labarre C, Dupont G, Giroud M, et al. A review of psychosocial factors and stroke: A new public health problem. Rev Neurol (Paris). 2019;175(10):686–92. https://doi.org/10.1016/j.neurol.2019.02.001.

    Article  CAS  Google Scholar 

  91. Pitts MW. Barnes Maze Procedure for Spatial Learning and Memory in Mice. Bio Protoc. 2018;8(5). https://doi.org/10.21769/bioprotoc.2744.

  92. Zimmer MR, Schmitz AE, Dietrich MO. Activation of Agrp neurons modulates memory-related cognitive processes in mice. Pharmacol Res. 2019;141:303–9. https://doi.org/10.1016/j.phrs.2018.12.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Healy SDJ-A, C. Spatial memory. In: M.D. Breed JM, editor. Encyclopedia of Animal Behavior. Oxford: Academic Press, 2010; 2010. p. 304–7.

  94. Provencio JJ, Swank V, Lu H, Brunet S, Baltan S, Khapre RV, et al. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors. Brain Behav Immun. 2016;54:233–42. https://doi.org/10.1016/j.bbi.2016.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ennaceur A, Meliani K. A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory. Behav Brain Res. 1992;51(1):83–92. https://doi.org/10.1016/s0166-4328(05)80315-8.

    Article  CAS  PubMed  Google Scholar 

  96. Reisel D, Bannerman DM, Schmitt WB, Deacon RM, Flint J, Borchardt T, et al. Spatial memory dissociations in mice lacking GluR1. Nat Neurosci. 2002;5(9):868–73. https://doi.org/10.1038/nn910.

    Article  CAS  PubMed  Google Scholar 

  97. Ennaceur A, Neave N, Aggleton JP. Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res. 1997;113(3):509–19. https://doi.org/10.1007/pl00005603.

    Article  CAS  PubMed  Google Scholar 

  98. Sasaki T, Hoffmann U, Kobayashi M, Sheng H, Ennaceur A, Lombard FW, et al. Long-Term Cognitive Deficits After Subarachnoid Hemorrhage in Rats. Neurocrit Care. 2016;25(2):293–305. https://doi.org/10.1007/s12028-016-0250-1.

    Article  PubMed  Google Scholar 

  99. Buunk AM, Groen RJM, Veenstra WS, Metzemaekers JDM, van der Hoeven JH, van Dijk JMC, et al. Cognitive deficits after aneurysmal and angiographically negative subarachnoid hemorrhage: Memory, attention, executive functioning, and emotion recognition. Neuropsychology. 2016;30(8):961–9. https://doi.org/10.1037/neu0000296.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Neurosurgery Department of the Houston Methodist Hospital.

Author information

Authors and Affiliations

Authors

Contributions

ARG and EG conceived and designed experiments; acquired, analyzed, and interpreted data; and wrote the manuscript. MG designed the experiments and interpreted data and edited and critically revised the manuscript. MH analyzed and interpreted data. GB conceived the experiments, analyzed data, and drafted and critically revised the manuscript.

Corresponding author

Correspondence to G. W. Britz.

Ethics declarations

Conflict of Interest

All authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 599 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regnier-Golanov, A.S., Gulinello, M., Hernandez, M.S. et al. Subarachnoid Hemorrhage Induces Sub-acute and Early Chronic Impairment in Learning and Memory in Mice. Transl. Stroke Res. 13, 625–640 (2022). https://doi.org/10.1007/s12975-022-00987-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-00987-9

Keywords

Navigation