Skip to main content
Log in

Long-Term Cognitive Deficits After Subarachnoid Hemorrhage in Rats

  • Translational research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cognitive dysfunction can be a long-term complication following subarachnoid hemorrhage (SAH). Preclinical models have been variously characterized to emulate this disorder. This study was designed to directly compare long-term cognitive deficits in the context of similar levels of insult severity in the cisterna magna double-blood (DB) injection versus prechiasmatic blood (PB) injection SAH models.

Methods

Pilot work identified blood injectate volumes necessary to provide similar mortality rates (20–25 %). Rats were then randomly assigned to DB or PB insults. Saline injection and naïve rats were used as controls. Functional and cognitive outcome was assessed over 35 days.

Results

DB and PB caused similar transient rotarod deficits. PB rats exhibited decreased anxiety behavior on the elevated plus maze, while anxiety was increased in DB. DB and PB caused differential deficits in the novel object recognition and novel object location tasks. Morris water maze performance was similarly altered in both models (decreased escape latency and increased swimming speed). SAH caused histologic damage in the medial prefrontal cortex, perirhinal cortex, and hippocampal CA1, although severity of injury in the respective regions differed between DB and PB.

Conclusion

Both SAH models caused long-term cognitive deficits in the context of similar insult severity. Cognitive deficits differed between the two models, as did distribution of histologic injury. Each model offers unique properties and both models may be useful for study of SAH-induced cognitive deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mayer SA, Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, et al. Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology. 2002;59(11):1750–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, et al. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 2002;33(1):200–8.

    Article  PubMed  Google Scholar 

  3. Sheldon S, Macdonald RL, Cusimano M, Spears J, Schweizer TA. Long-term consequences of subarachnoid hemorrhage: examining working memory. J Neurol Sci. 2013;332(1–2):145–7.

    Article  PubMed  Google Scholar 

  4. Latimer SF, Wilson FC, McCusker CG, Caldwell SB, Rennie I. Subarachnoid haemorrhage (SAH): long-term cognitive outcome in patients treated with surgical clipping or endovascular coiling. Disabil Rehabil. 2013;35(10):845–50.

    Article  PubMed  Google Scholar 

  5. Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41(8):e519–36.

    Article  PubMed  Google Scholar 

  6. Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52(1):165–75 (discussion 75–6).

    PubMed  Google Scholar 

  7. Lee JY, Huang DL, Keep R, Sagher O. Characterization of an improved double hemorrhage rat model for the study of delayed cerebral vasospasm. J Neurosci Methods. 2008;168(2):358–66.

    Article  PubMed  Google Scholar 

  8. Lee JY, Sagher O, Keep R, Hua Y, Xi G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 2009;65(2):331–43 (discussion 43).

    Article  PubMed  Google Scholar 

  9. Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Long-term cognitive dysfunction following experimental subarachnoid hemorrhage: new perspectives. Exp Neurol. 2008;213(2):336–44.

    Article  CAS  PubMed  Google Scholar 

  10. Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Simvastatin treatment duration and cognitive preservation in experimental subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2009;21(4):326–33.

    Article  PubMed  Google Scholar 

  11. Jeon H, Ai J, Sabri M, Tariq A, Macdonald RL. Learning deficits after experimental subarachnoid hemorrhage in rats. Neuroscience. 2010;169(4):1805–14.

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Li J, Wang Z, Yu Z, Chen G. Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to cystatin C: possible involvement of the autophagy pathway. Mol Neurobiol. 2014;49(2):1043–54.

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Qiu J, Wang Z, You W, Wu L, Ji C, et al. Dimethylfumarate alleviates early brain injury and secondary cognitive deficits after experimental subarachnoid hemorrhage via activation of Keap1-Nrf2-ARE system. J Neurosurg. 2015;123(4):915–23.

    Article  PubMed  Google Scholar 

  14. Han SM, Wan H, Kudo G, Foltz WD, Vines DC, Green DE, et al. Molecular alterations in the hippocampus after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2014;34(1):108–17.

    Article  CAS  PubMed  Google Scholar 

  15. Macdonald RL. Subarachnoid hemorrhage and outcome. J Neurosurg. 2013;119(3):603–4.

    Article  PubMed  Google Scholar 

  16. Silasi G, Colbourne F. Long-term assessment of motor and cognitive behaviours in the intraluminal perforation model of subarachnoid hemorrhage in rats. Behav Brain Res. 2009;198(2):380–7.

    Article  PubMed  Google Scholar 

  17. Xie Y, Liu W, Zhang X, Wang L, Xu L, Xiong Y, et al. Human albumin improves long-term behavioral sequelae after subarachnoid hemorrhage through neurovascular remodeling. Crit Care Med. 2015;43(10):e440–9.

    Article  PubMed  Google Scholar 

  18. Milner E, Holtzman JC, Friess S, Hartman RE, Brody DL, Han BH, et al. Endovascular perforation subarachnoid hemorrhage fails to cause Morris water maze deficits in the mouse. J Cereb Blood Flow Metab. 2014;34:e1–e9. doi:10.1038/jcbfm.2014.108.

    Article  Google Scholar 

  19. Boyko M, Azab AN, Kuts R, Gruenbaum BF, Gruenbaum SE, Melamed I, et al. The neuro-behavioral profile in rats after subarachnoid hemorrhage. Brain Res. 2013;1491:109–16.

    Article  CAS  PubMed  Google Scholar 

  20. Shen H, Chen Z, Wang Y, Gao A, Li H, Cui Y, et al. Role of neurexin-1beta and neuroligin-1 in cognitive dysfunction after subarachnoid hemorrhage in rats. Stroke. 2015;46(9):2607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Handley SL, Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol. 1984;327(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  22. Ennaceur A. One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res. 2010;215(2):244–54.

    Article  CAS  PubMed  Google Scholar 

  23. Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13(2):93–110.

    Article  CAS  PubMed  Google Scholar 

  24. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  25. Samra SK, Giordani B, Caveney AF, Clarke WR, Scott PA, Anderson S, et al. Recovery of cognitive function after surgery for aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(6):1864–72.

    Article  PubMed  Google Scholar 

  26. Guresir E, Schuss P, Borger V, Vatter H. Experimental subarachnoid hemorrhage: double cisterna magna injection rat model–assessment of delayed pathological effects of cerebral vasospasm. Transl Stroke Res. 2015;6(3):242–51.

    Article  PubMed  Google Scholar 

  27. Coyle P. Vascular patterns of the rat hippocampal formation. Exp Neurol. 1976;52(3):447–58.

    Article  CAS  PubMed  Google Scholar 

  28. Shah AA, Treit D. Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res. 2003;969(1–2):183–94.

    Article  CAS  PubMed  Google Scholar 

  29. Bertoglio LJ, Joca SR, Guimaraes FS. Further evidence that anxiety and memory are regionally dissociated within the hippocampus. Behav Brain Res. 2006;175(1):183–8.

    Article  PubMed  Google Scholar 

  30. Morris PG, Wilson JT, Dunn L. Anxiety and depression after spontaneous subarachnoid hemorrhage. Neurosurgery. 2004;54(1):47–52 (discussion 52–4).

    Article  PubMed  Google Scholar 

  31. Visser-Meily JM, Rhebergen ML, Rinkel GJ, van Zandvoort MJ, Post MW. Long-term health-related quality of life after aneurysmal subarachnoid hemorrhage: relationship with psychological symptoms and personality characteristics. Stroke. 2009;40(4):1526–9.

    Article  PubMed  Google Scholar 

  32. Fontanella M, Perozzo P, Ursone R, Garbossa D, Bergui M. Neuropsychological assessment after microsurgical clipping or endovascular treatment for anterior communicating artery aneurysm. Acta Neurochir (Wien). 2003;145(10):867–72 (discussion 72).

    Article  CAS  Google Scholar 

  33. von Vogelsang AC, Forsberg C, Svensson M, Wengstrom Y. Patients experience high levels of anxiety 2 years following aneurysmal subarachnoid hemorrhage. World Neurosurg. 2015;83(6):1090–7.

    Article  Google Scholar 

  34. Ronne-Engstrom E, Enblad P, Lundstrom E. Outcome after spontaneous subarachnoid hemorrhage measured with the EQ-5D. Stroke. 2011;42(11):3284–6.

    Article  PubMed  Google Scholar 

  35. Al-Khindi T, Macdonald RL, Schweizer TA. Decision-making deficits persist after aneurysmal subarachnoid hemorrhage. Neuropsychology. 2014;28(1):68–74.

    Article  PubMed  Google Scholar 

  36. Escartin G, Junque C, Juncadella M, Gabarros A, de Miquel MA, Rubio F. Decision-making impairment on the Iowa Gambling Task after endovascular coiling or neurosurgical clipping for ruptured anterior communicating artery aneurysm. Neuropsychology. 2012;26(2):172–80.

    Article  PubMed  Google Scholar 

  37. Mavaddat N, Kirkpatrick PJ, Rogers RD, Sahakian BJ. Deficits in decision-making in patients with aneurysms of the anterior communicating artery. Brain. 2000;123(Pt 10):2109–17.

    Article  PubMed  Google Scholar 

  38. de Bruin JP, Sanchez-Santed F, Heinsbroek RP, Donker A, Postmes P. A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res. 1994;652(2):323–33.

    Article  PubMed  Google Scholar 

  39. Compton DM, Griffith HR, McDaniel WF, Foster RA, Davis BK. The flexible use of multiple cue relationships in spatial navigation: a comparison of water maze performance following hippocampal, medial septal, prefrontal cortex, or posterior parietal cortex lesions. Neurobiol Learn Mem. 1997;68(2):117–32.

    Article  CAS  PubMed  Google Scholar 

  40. Jo YS, Park EH, Kim IH, Park SK, Kim H, Kim HT, et al. The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions. J Neurosci. 2007;27(49):13567–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Department of Anesthesiology, Duke University Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Warner.

Ethics declarations

Conflicts of Interest

None.

Human and Animal Rights

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Toshihiro Sasaki and Ulrike Hoffmann have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, T., Hoffmann, U., Kobayashi, M. et al. Long-Term Cognitive Deficits After Subarachnoid Hemorrhage in Rats. Neurocrit Care 25, 293–305 (2016). https://doi.org/10.1007/s12028-016-0250-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-016-0250-1

Keywords

Navigation