Skip to main content

Advertisement

Log in

Annexin A2 Plus Low-Dose Tissue Plasminogen Activator Combination Attenuates Cerebrovascular Dysfunction After Focal Embolic Stroke of Rats

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Previous studies showed recombinant annexin A2 (rA2) in combination with low-dose tissue-type plasminogen activator (tPA) improved thrombolytic efficacy and long-term neurological outcomes after embolic focal ischemia in rats. The objective of this study was to investigate the effects and mechanisms of the combination in early BBB integrity and cerebrovascular patency in the rat focal embolic stroke model. Ischemic brain infarct volume and hemorrhagic transformation were quantified at 24 h after stroke. At an earlier time point, 16 h after stroke, BBB integrity was evaluated by IgG extravasation, and the involved mechanisms were assessed for tight junction ZO-1 and adhesion junction ve-cadherin protein expression, matrix metalloproteinase activation, extracellular matrix collagen IV and endothelial barrier antigen expression, and activation of microglia/macrophages and astrocytes. While at the same time point, cerebrovascular patency was assessed by intravascular fibrin and platelet depositions. At 24 h after stroke, the combination showed significant reduction in brain infarction and intracerebral hemorrhage. At 16 h after stroke onset, the combination therapy significantly reduced BBB disruption, and improved preservation of the junction proteins ZO-1 and ve-cadherin, decreased activation of matrix metalloproteinase, inhibited degradation of extracellular matrix collagen IV and endothelial barrier antigen, and reduced microglia/macrophage and astrocytes activations. Meanwhile, the combination also significantly improved cerebrovascular patency by reducing intravascular fibrin and platelet depositions in the peri-infarct brain tissues. These results suggest the beneficial effects of the rA2 plus low-dose tPA combination may be mediated in part by the amelioration of BBB disruption and improvement of cerebrovascular patency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ranby M, Brandstrom A. Biological control of tissue plasminogen activator-mediated fibrinolysis. Enzyme. 1988;40(2–3):130–43.

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Tsuji K, Lee SR, Ning M, Furie KL, Buchan AM, et al. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke. 2004;35(11 Suppl 1):2726–30.

    Article  CAS  PubMed  Google Scholar 

  3. Yepes M, Roussel BD, Ali C, Vivien D. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci. 2009;32(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  4. Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM. The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab. 2004;24(9):945–63.

    Article  CAS  PubMed  Google Scholar 

  5. Fan X, Yu Z, Liu J, Liu N, Hajjar KA, Furie KL, et al. Annexin A2: a tissue plasminogen activator amplifier for thrombolytic stroke therapy. Stroke. 2010;41(10 Suppl):S54–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang Y, Fan X, Yu Z, Liao Z, Wang XS, van Leyen K, et al. Combination low-dose tissue-type plasminogen activator plus Annexin A2 for improving thrombolytic stroke therapy. Front Cell Neurosci. 2015;9:397.

    PubMed  PubMed Central  Google Scholar 

  7. Kim J, Hajjar KA. Annexin II: a plasminogen-plasminogen activator co-receptor. Front Biosci. 2002;7:d341–8.

    Article  CAS  PubMed  Google Scholar 

  8. Hajjar KA, Menell JS. Annexin II: a novel mediator of cell surface plasmin generation. Ann N Y Acad Sci. 1997;811:337–49.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Fan X, Yu Z, Liao Z, Zhao J, Mandeville E, et al. Effects of tissue plasminogen activator and annexin A2 combination therapy on long-term neurological outcomes of rat focal embolic stroke. Stroke. 2014;45(2):619–22.

    Article  CAS  PubMed  Google Scholar 

  10. Walvick RP, Bratane BT, Henninger N, Sicard KM, Bouley J, Yu Z, et al. Visualization of clot lysis in a rat embolic stroke model: application to comparative lytic efficacy. Stroke. 2011;42(4):1110–5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhu H, Fan X, Yu Z, Liu J, Murata Y, Lu J, et al. Annexin A2 combined with low-dose tPA improves thrombolytic therapy in a rat model of focal embolic stroke. J Cereb Blood Flow Metab. 2010;30(6):1137–46.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jiang Y, Fan X, Yu Z, Cheng C, Wang XS, Lo EH, et al. Low dose tPA plus annexin A2 combination attenuates tPA delayed treatment-associated hemorrhage and improves recovery in rat embolic focal stroke. Neurosci Lett. 2015;602:73–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA stroke study group. Stroke 1997;28 (11):2109–18.

  14. Jin X, Liu J, Liu W. Early ischemic blood brain barrier damage: a potential indicator for hemorrhagic transformation following tissue plasminogen activator (tPA) thrombolysis? Curr Neurovasc res. 2014;11(3):254–62.

    Article  CAS  PubMed  Google Scholar 

  15. Shi Y, Leak RK, Keep RF, Chen J. Translational stroke research on blood-brain barrier damage: challenges, perspectives, and goals. Transl Stroke Res. 2016;7(2):89–92.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krueger M, Bechmann I, Immig K, Reichenbach A, Hartig W, Michalski D. Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(2):292–303.

    Article  CAS  PubMed  Google Scholar 

  17. Alexandrov AV, Grotta JC. Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator. Neurology. 2002;59(6):862–7.

    Article  CAS  PubMed  Google Scholar 

  18. Fan X, Qiu J, Yu Z, Dai H, Singhal AB, Lo EH, et al. A rat model of studying tissue-type plasminogen activator thrombolysis in ischemic stroke with diabetes. Stroke. 2012;43(2):567–70.

    Article  CAS  PubMed  Google Scholar 

  19. Korninger C, Collen D. Studies on the specific fibrinolytic effect of human extrinsic (tissue-type) plasminogen activator in human blood and in various animal species in vitro. Thromb Haemost. 1981;46(2):561–5.

    CAS  PubMed  Google Scholar 

  20. Zechariah A, ElAli A, Hermann DM. Combination of tissue-plasminogen activator with erythropoietin induces blood-brain barrier permeability, extracellular matrix disaggregation, and DNA fragmentation after focal cerebral ischemia in mice. Stroke. 2010;41(5):1008–12.

    Article  CAS  PubMed  Google Scholar 

  21. Burrows FE, Bray N, Denes A, Allan SM, Schiessl I. Delayed reperfusion deficits after experimental stroke account for increased pathophysiology. J Cereb Blood Flow Metab. 2015;35(2):277–84.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12(4):441–5.

    Article  CAS  PubMed  Google Scholar 

  23. Fan X, Lo EH, Wang X. Effects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats. Stroke. 2013;44(3):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen YJ, Nguyen HM, Maezawa I, Grossinger EM, Garing AL, Kohler R, et al. The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. J Cereb Blood Flow Metab. 2016;36(12):2146–61.

    Article  CAS  PubMed  Google Scholar 

  25. Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo EH, et al. Neuregulin1-beta decreases IL-1beta-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl Stroke Res. 2015;6(2):116–24.

    Article  CAS  PubMed  Google Scholar 

  26. Han X, Lan X, Li Q, Gao Y, Zhu W, Cheng T, et al. Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury. J Cereb Blood Flow Metab. 2016;36(6):1059–74.

    Article  CAS  PubMed  Google Scholar 

  27. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21(19):7724–32.

    CAS  PubMed  Google Scholar 

  28. Liu H, Wang Y, Xiao Y, Hua Z, Cheng J, Jia J. Hydrogen sulfide attenuates tissue plasminogen activator-induced cerebral hemorrhage following experimental stroke. Transl Stroke Res. 2016;7(3):209–19.

    Article  CAS  PubMed  Google Scholar 

  29. Rempe RG, Hartz AM, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eriksen N, Rasmussen RS, Overgaard K, Johansen FF, Pakkenberg B. Comparison of quantitative estimation of intracerebral hemorrhage and infarct volumes after thromboembolism in an embolic stroke model. Int J Stroke. 2014;9(6):802–10.

    Article  PubMed  Google Scholar 

  31. Schlunk F, Greenberg SM. The pathophysiology of intracerebral hemorrhage formation and expansion. Transl Stroke Res. 2015;6(4):257–63.

    Article  CAS  PubMed  Google Scholar 

  32. Ronaldson PT, Davis TP. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des. 2012;18(25):3624–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163(5):1064–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishimura A, Ago T, Kuroda J, Arimura K, Tachibana M, Nakamura K, et al. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J Cereb Blood Flow Metab. 2016;36(6):1143–54.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Rosell A, Lo EH. Targeting extracellular matrix proteolysis for hemorrhagic complications of tPA stroke therapy. CNS Neurol Disord Drug Targets. 2008;7(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  36. van Leyen K, Arai K, Wang X, Lo EH. From cell to cell: the breakdown of intercellular connectivity after stroke and how to regain contact. Brain Res. 1623;2015:1–2.

    Google Scholar 

  37. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chaitanya GV, Cromer WE, Wells SR, Jennings MH, Couraud PO, Romero IA, et al. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. J Neuroinflammation. 2011;8:162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Filous AR, Silver J. Targeting astrocytes in CNS injury and disease: a translational research approach. Prog Neurobiol. 2016;144:173–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Polavarapu R, Gongora MC, Yi H, Ranganthan S, Lawrence DA, Strickland D, et al. Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood. 2007;109(8):3270–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rom S, Zuluaga-Ramirez V, Dykstra H, Reichenbach NL, Ramirez SH, Persidsky Y. Poly(ADP-ribose) polymerase-1 inhibition in brain endothelium protects the blood-brain barrier under physiologic and neuroinflammatory conditions. J Cereb Blood Flow Metab. 2015;35(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  42. Lenart N, Brough D, Denes A. Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab. 2016;36(10):1668–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Szigeti K, Horvath I, Veres DS, Martinecz B, Lenart N, Kovacs N, et al. A novel SPECT-based approach reveals early mechanisms of central and peripheral inflammation after cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(12):1921–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Yang Q, Chen G, Zhang JH. An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res. 2015;6(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  45. Xiong XY, Yang QW. Rethinking the roles of inflammation in the intracerebral hemorrhage. Transl Stroke Res. 2015;6(5):339–41.

    Article  PubMed  Google Scholar 

  46. Li L, Tao Y, Tang J, Chen Q, Yang Y, Feng Z, et al. A cannabinoid receptor 2 agonist prevents thrombin-induced blood-brain barrier damage via the inhibition of microglial activation and matrix metalloproteinase expression in rats. Transl Stroke Res. 2015;6(6):467–77.

    Article  CAS  PubMed  Google Scholar 

  47. Stranahan AM, Hao S, Dey A, Yu X, Baban B. Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J Cereb Blood Flow Metab. 2016;36(12):2108–21.

    Article  CAS  PubMed  Google Scholar 

  48. Choudhri TF, Hoh BL, Prestigiacomo CJ, Huang J, Kim LJ, Schmidt AM, et al. Targeted inhibition of intrinsic coagulation limits cerebral injury in stroke without increasing intracerebral hemorrhage. J Exp Med. 1999;190(1):91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang L, Zhang ZG, Buller B, Jiang J, Jiang Y, Zhao D, et al. Combination treatment with VELCADE and low-dose tissue plasminogen activator provides potent neuroprotection in aged rats after embolic focal ischemia. Stroke. 2010;41(5):1001–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang ZG, Chopp M, Goussev A, Lu D, Morris D, Tsang W, et al. Cerebral microvascular obstruction by fibrin is associated with upregulation of PAI-1 acutely after onset of focal embolic ischemia in rats. J Neurosci. 1999;19(24):10898–907.

    CAS  PubMed  Google Scholar 

  51. Puri RN, Colman RW. Reocclusion after thrombolytic therapy: strategies for inhibiting thrombin-induced platelet aggregation. Blood Coagul Fibrinolysis. 1993;4(3):465–78.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang ZG, Zhang L, Tsang W, Goussev A, Powers C, Ho KL, et al. Dynamic platelet accumulation at the site of the occluded middle cerebral artery and in downstream microvessels is associated with loss of microvascular integrity after embolic middle cerebral artery occlusion. Brain Res. 2001;912(2):181–94.

    Article  CAS  PubMed  Google Scholar 

  53. Relton JK, Strijbos PJ, O'Shaughnessy CT, Carey F, Forder RA, Tilders FJ, et al. Lipocortin-1 is an endogenous inhibitor of ischemic damage in the rat brain. J Exp Med. 1991;174(2):305–10.

    Article  CAS  PubMed  Google Scholar 

  54. La M, Tailor A, D'Amico M, Flower RJ, Perretti M. Analysis of the protection afforded by annexin 1 in ischaemia-reperfusion injury: focus on neutrophil recruitment. Eur J Pharmacol. 2001;429(1–3):263–78.

    Article  CAS  PubMed  Google Scholar 

  55. Gavins FN, Dalli J, Flower RJ, Granger DN, Perretti M. Activation of the annexin 1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J. 2007;21(8):1751–8.

    Article  CAS  PubMed  Google Scholar 

  56. Dai H, Yu Z, Fan X, Liu N, Yan M, Chen Z, et al. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity. Thromb Haemost. 2013;109(6):1070–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo M, Hajjar KA. Annexin A2 system in human biology: cell surface and beyond. Semin Thromb Hemost. 2013;39(4):338–46.

    Article  CAS  PubMed  Google Scholar 

  58. Su SC, Maxwell SA, Bayless KJ. Annexin 2 regulates endothelial morphogenesis by controlling AKT activation and junctional integrity. J Biol Chem. 2010;285(52):40624–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koerdt SN, Gerke V. Annexin A2 is involved in Ca2+-dependent plasma membrane repair in primary human endothelial cells. Biochim Biophys Acta. 2017;1864(6):1046–53.

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med. 2003;9(10):1313–7.

    Article  CAS  PubMed  Google Scholar 

  61. Tsuji K, Aoki T, Tejima E, Arai K, Lee SR, Atochin DN, et al. Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia. Stroke. 2005;36(9):1954–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Fan or Xiaoying Wang.

Ethics declarations

Funding

This work was in part supported by the National Institute of Health grants R01-NS065998 and UO1-NS072324 (to X.W.) and National Natural Science Foundation of China (No. 81622051) (to X.F.).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All national and institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Jiang, Y., Yu, Z. et al. Annexin A2 Plus Low-Dose Tissue Plasminogen Activator Combination Attenuates Cerebrovascular Dysfunction After Focal Embolic Stroke of Rats. Transl. Stroke Res. 8, 549–559 (2017). https://doi.org/10.1007/s12975-017-0542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0542-6

Keywords

Navigation