Skip to main content
Log in

Nanofertilizers for Sustainable Crop Production: A Comprehensive Review

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

With the rapid population explosion, the demand for food sources will continue to rise. The use of chemical fertilizers in disproportionate quantities to meet the food demand has caused nutrient imbalances and losses in the soil. Using chemical fertilizer excessively often finds its way to water resources and leads to water pollution. Hence, alternative measures must be adopted to achieve sustainable agricultural production systems rather than the conventional practice of chemical fertilization. In this context, applying nanoformulation and/or nanofertilizer draws attention to its ability to improve crop production and fertilizer use efficiency without causing damage to the environment. Nano-inorganic and nano-organic fertilizers help to transport nutrients gradually in a sustainable way at a specific dose to the crops, thereby enhancing the rate of nutrient absorption by the crop plants. Many reports indicate that using nanofertilizer has reduced nutrient (e.g., P, Zn) acquisition by crops in deficient soils. In this review, the recent advances in nanoformulations as fertilizers are highlighted. It focuses mainly on applying nano-macronutrients, nano-micronutrients, nano-biofertilizer, nano-vermicompost, and nanobiochar in different crops for yield and growth enhancement, better nutrient use efficiency, and sustainability of soil health. The potential additional benefits and precise concerns are also discussed for sustainable agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 

Similar content being viewed by others

Data Availability

All relevant data are included in the paper.

Code Availability

Not applicable.

Abbreviations

Zn :

Zinc

B :

Boron

ZnO :

Zinc oxide

NPK :

Nitrogen, phosphorus, potassium

CNK :

Carbon, nitrogen, phosphorus

NPKS :

Nitrogen, phosphorus, potassium, sulphur

Fe 2 O 3 :

Ferrous oxide

References

  1. Rashmi, I., Roy, T., Kartika, K.S., Pal, R., Coumar, V., Kala, S., Shinoji, K.C., 2020. Organic and inorganic fertilizer contaminants in agriculture: Impact on soil and water resources. Contaminants in agriculture: Sources, impacts and management 3 https://doi.org/10.1007/978-3-030-41552-5_1

  2. Xue, X. Y., Cheng, R., Shi, L., Ma, Z., & Zheng, X. (2017). Nanomaterials for water pollution monitoring and remediation. Environmental Chemistry Letters, 15, 23–27. https://doi.org/10.1007/s10311-016-0595-x

    Article  Google Scholar 

  3. Panda, M. K., Panda, S. K., Singh, Y. D., Jit, B. P., Behara, R. K., & Dhal, N. K. (2020). Role of nanoparticles and nanomaterials in drug delivery: an overview. In J. Patra, A. Shukla, & G. Das (Eds.), Advances in pharmaceutical biotechnology. Singapore: Springer. https://doi.org/10.1007/978-981-15-2195-9_19

    Chapter  Google Scholar 

  4. Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S., & Mishra, M. (2018). Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry, 8, 123–137. https://doi.org/10.1007/s40097-018-0265-6

    Article  Google Scholar 

  5. Saleh, T. A. (2018). Nanotechnology in oil and gas industries. Springer.

    Book  Google Scholar 

  6. Ameta, S. K., Rai, A. K., Hiran, D., Ameta, R., & Ameta, S. C. (2020). Use of nanomaterials in food science. In M. Ghorbanpour, P. Bhargava, A. Varma, & D. Choudhary (Eds.), Biogenic nano-particles and their use in agro-ecosystems. Singapore: Springer.

    Google Scholar 

  7. Saharan, V., & Pal, A. (2016). Chitosan based nanomaterials in plant growth and protection. Springer.

    Book  Google Scholar 

  8. Rajwade, J. M., Chikte, R. G., & Paknikar, K. M. (2020). Nanomaterials: New weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology, 104, 1437–1461. https://doi.org/10.1007/s00253-019-10334-y

    Article  Google Scholar 

  9. Haydar, M. S., Ghosh, S., & Mandal, P. (2021). Application of iron oxide nanoparticles as micronutrient fertilizer in mulberry propagation. Journal of Plant Growth Regulation, 41, 1726–1746. https://doi.org/10.1007/s00344-021-10413-3

    Article  Google Scholar 

  10. Khan, H. A., Naqvi, S. R., Mehran, M. T., Khoja, A. H., Niazi, M. B., Juchelková, D., & Atabani, A. (2021). A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture. Chemosphere, 285, 131382. https://doi.org/10.1016/j.chemosphere.2021.131382

    Article  Google Scholar 

  11. Li, F., Jin, Y., He, S., Jin, J., Wang, Z., Khan, S., Tian, G., & Liang, X. (2021). Use of polyacrylamide modified biochar coupled with organic and chemical fertilizers for reducing phosphorus loss under different cropping systems. Agriculture, Ecosystems & Environment, 310,. https://doi.org/10.1016/j.agee.2021.107306

  12. Okey-Onyesolu, C. F., Hassanisaadi, M., Bilal, M., Barani, M., Rahdar, A., Iqbal, J., & Kyzas, G. Z. (2021). Nanomaterials as nanofertilizers and nanopesticides: An overview. Chemistry Select, 6, 8645–8663. https://doi.org/10.1002/slct.202102379

    Article  Google Scholar 

  13. Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plant, 10, 2. https://doi.org/10.3390/plants10010002

    Article  Google Scholar 

  14. Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29, 792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

    Article  Google Scholar 

  15. Siddiqi, K. S., & Husen, A. (2017). Plant response to engineered metal oxide nanoparticles. Nanoscale Research Letters, 12, 1–8. https://doi.org/10.1186/s11671-017-1861-y

    Article  Google Scholar 

  16. Kalia, A., Kaur, H., 2019. Nano-biofertilizers: Harnessing dual benefits of nano-nutrient and bio-fertilizers for enhanced nutrient use efficiency and sustainable productivity. In: Nanoscience for sustainable productivity. Nanoscience for sustainable agriculture Springer Chem 51–73 https://doi.org/10.1007/978-3-319-97852-9_3

  17. Solanki, P., Bhargava, A., Chhipa, H., Jain, N., & Panwar, J. (2015). Nano-fertilizers and their smart delivery system. In M. Rai, C. Ribeiro, L. Mattoso, & N. Duran (Eds.), Nanotechnologies in food and agriculture. Cham: Springer. https://doi.org/10.1007/978-3-319-14024-7_4

    Chapter  Google Scholar 

  18. Ma, C., White, J. C., Zhao, J., Zhao, Q., & Xing, B. (2018). Uptake of engineered nanoparticles by food crops: Characterization, mechanisms, and implications. Annual Review of Food Science and Technology, 9, 129–153. https://doi.org/10.1146/annurev-food-030117-012657

    Article  Google Scholar 

  19. Blouin, G. M., Rindt, D. W., & Moore, O. E. (1971). Sulfur-coated fertilizers for controlled release Pilot-plant production. Journal of Agricultural and Food Chemistry, 19, 801–808. https://doi.org/10.1021/jf60177a039

    Article  Google Scholar 

  20. Kong, W., Li, Q., Li, X., Su, Y., Yue, Q., & Gao, B. (2019). A biodegradable biomass-based polymeric composite for slow release and water retention. Journal of Environmental Management, 230, 190–198. https://doi.org/10.1016/j.jenvman.2018.09.086

    Article  Google Scholar 

  21. Azeem, B., KuShaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of controlled release, 181, 11–21. https://doi.org/10.1016/j.jconrel.2014.02.020

    Article  Google Scholar 

  22. Kalia, A., Sharma, S. P., Kaur, H., & Kaur, H., 2020. Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: Prospects and challenges. Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems, 99–134. https://doi.org/10.1016/B978-0-12-821354-4.00005-4

  23. Lawrencia, D., Wong, S. K., Low, D. Y. S., Goh, B. H., Goh, J. K., Ruktanonchai, U. R., Soottitantawat, A., Lee, L. H., & Tang, S. Y. (2021). Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10, 238. https://doi.org/10.3390/plants10020238

    Article  Google Scholar 

  24. Sempeho, S. I., Kim, H. T., Mubofu, E., & Hilonga, A., 2014. Meticulous overview on the controlled release fertilizers. Advances in Chemistry. 1–16 http://hdl.handle.net/20.500.11810/2508

  25. Calabi-Floody, M., Medina, J., Rumpel, C., Condron, L. M., Hernandez, M., Dumont, M., & de La Luz Mora, M. (2018). Smart fertilizers as a strategy for sustainable agriculture. Advances in Agronomy, 147, 119–157. https://doi.org/10.1016/bs.agron.2017.10.003

    Article  Google Scholar 

  26. Le, T. N. Q., Tran, N. N., Escribà-Gelonch, M., Serra, C. A., Fisk, I., McClements, D. J., & Hessel, V. (2021). Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chemical Society Reviews, 50, 11979–12012. https://doi.org/10.1039/D1CS00465D

    Article  Google Scholar 

  27. Ibrahim, K. A., Naz, M. Y., Shukrullah, S., Sulaiman, S. A., Ghaffar, A., & AbdEl-Salam, N. (2019). Controlling nitrogen pollution via encapsulation of urea fertilizer in cross-linked corn starch. BioResources, 14, 7775–7789.

    Article  Google Scholar 

  28. Naz, M. Y., Sulaiman, S. A., Ariwahjoedi, B., & Shaari, K. Z. K. (2015). Effect of pre-coat solution temperature on fluidized bed urea coatings. Surface Engineering, 31, 486–491. https://doi.org/10.1179/1743294414Y.0000000381

    Article  Google Scholar 

  29. Kumar, S., Dilbaghi, N., Rani, R., Bhanjana, G., & Umar, A. (2013). Novel approaches for enhancement of drug bioavailability. RASE, 2, 133–154. https://doi.org/10.1166/rase.2013.1038

    Article  Google Scholar 

  30. Pradhan, S., & Mailapalli, D. R. (2017). Interaction of engineered nanoparticles with the agri-environment. Journal of Agriculture and Food Chemistry, 65, 8279–8294. https://doi.org/10.1021/acs.jafc.7b02528

    Article  Google Scholar 

  31. Handy, R. D., Owen, R., & Valsami-Jones, E. (2008). The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17, 315–325. https://doi.org/10.1007/s10646-008-0206-0

    Article  Google Scholar 

  32. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179, 154–163. https://doi.org/10.1016/j.plantsci.2010.04.012

    Article  Google Scholar 

  33. Fageria, N. K., Filho, M. B., Moreira, A., & Guimarães, C. M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32, 1044–1064. https://doi.org/10.1080/01904160902872826

    Article  Google Scholar 

  34. Wang, W. N., Tarafdar, J. C., & Biswas, P. (2013). Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. Journal of Nanoparticle Research, 15, 1–13. https://doi.org/10.1007/s11051-013-1417-8

    Article  Google Scholar 

  35. Raliya, R., Franke, C., Chavalmane, S., Nair, R., Reed, N., & Biswas, P. (2016). Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science, 7, 1288. https://doi.org/10.3389/fpls.2016.01288

    Article  Google Scholar 

  36. Babu, S., Singh, R., Yadav, D., Rathore, S. S., Raj, R., Avasthe, R., Yadav, S. K., Das, A., Yadav, V., Yadav, B., & Shekhawat, K. (2022). Nanofertilizers for agricultural and environmental sustainability. Chemosphere, 292, 133451. https://doi.org/10.1016/j.chemosphere.2021.133451

    Article  Google Scholar 

  37. El-Ghamry, A., Mosa, A. A., Alshaal, T., & El-Ramady, H. (2018). Nanofertilizers vs. biofertilizers: New insights. Environment, Biodiversity and Soil Security, 2, 51–72. https://doi.org/10.21608/jenvbs.2018.3880.1029

    Article  Google Scholar 

  38. Ojeda-Barrios, D.L., Morales, I., Juárez-Maldonado, A., Sandoval-Rangel, A., Fuentes-Lara, L.O., Benavides-Mendoza, A., 2020. Importance of nanofertilizers in fruit nutrition. In Fruit crops. 497–508 Elsevier. https://doi.org/10.1016/B978-0-12-818732-6.00035-6

  39. Ribeiro, C., & Carmo, M. (2019). Why nonconventional materials are answers for sustainable agriculture? MRS Energy Sustainability, 6,. https://doi.org/10.1557/mre.2019.7

  40. Ramzan, S., Rasool, T., Bhat, R. A., Ahmad, P., Ashraf, I., Rashid, N., & Mir, I. A. (2020). Agricultural soils a trigger to nitrous oxide: A persuasive greenhouse gas and its management. Environmental Monitoring and Assessment, 192, 1–21. https://doi.org/10.1007/s10661-020-08410-2

    Article  Google Scholar 

  41. Mikkelsen, R. (2018). Nanofertilizer and nanotechnology: A quick look. Better Crops with Plant Food, 102, 18–9.

    Article  Google Scholar 

  42. Alimohammadi, M., Panahpour, E., & Naseri, A. (2020). Assessing the effects of urea and nano-nitrogen chelate fertilizers on sugarcane yield and dynamic of nitrate in soil. Soil Science and Plant Nutrition, 66, 352–359. https://doi.org/10.1080/00380768.2020.1727298

    Article  Google Scholar 

  43. Yatim, N. M., Shaaban, A., Dimin, M. F., Yusof, F., & Abd Razak, J. (2018). Effect of functionalised and non-functionalised carbon nanotubes-urea fertilizer on the growth of paddy. Tropical Life Sciences Research, 29, 17–35. https://doi.org/10.21315/tlsr2018.29.1.2

    Article  Google Scholar 

  44. Davarpanah, S., Tehranifar, A., Davarynejad, G., Aran, M., Abadía, J., & Khorassani, R. (2017). Effects of foliar nano-nitrogen and urea fertilizers on the physical and chemical properties of pomegranate (Punica granatum cv. Ardestani) fruits. HortScience, 52, 288–294. https://doi.org/10.21273/HORTSCI11248-16

    Article  Google Scholar 

  45. Janmohammadi, M., Navid, A., Segherloo, A. E., & Sabaghnia, N. (2016). Impact of nano-chelated micronutrients and biological fertilizers on growth performance and grain yield of maize under deficit irrigation condition. Biologia, 62,. https://doi.org/10.6001/biologija.v62i2.3339

  46. Ostadi, A., Javanmard, A., Machiani, M. A., Morshedloo, M. R., Nouraein, M., Rasouli, F., & Maggi, F. (2020). Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Industrial Crops and Products, 148, 11229. https://doi.org/10.1016/j.indcrop.2020.112290

    Article  Google Scholar 

  47. Rahman, M. H., Hasan, M. N., & Khan, M. Z. (2021). Study on different nano fertilizers influencing the growth, proximate composition and antioxidant properties of strawberry fruits. Journal of Agriculture and Food Research, 6, 100246. https://doi.org/10.1016/j.jafr.2021.100246

    Article  Google Scholar 

  48. Manikandan, A., & Subramanian, K. S. (2016). Evaluation of zeolite-based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. International Journal of Plant & Soil Science, 9, 1–9. https://doi.org/10.9734/IJPSS/2016/22103

    Article  Google Scholar 

  49. Mahmoud, A. W., & Swaefy, H. M. (2020). Comparison between commercial and nano NPK in presence of nano zeolite on sage plant yield and its components under water stress. Agriculture, 6, 24–39. https://doi.org/10.2478/agri-2020-0003

    Article  Google Scholar 

  50. Bala, N., Dey, A., Das, S., Basu, R., & Nandy, P. (2014). Effect of hydroxyapatite nanorod on chickpea (Cicer arietinum) plant growth and its possible use as nano-fertilizer. Iranian Journal of Plant Physiology, 4, 1061–9. https://doi.org/10.22034/IJPP.2014.540650

    Article  Google Scholar 

  51. Mosa, W. F., El-Shehawi, A. M., Mackled, M. I., Salem, M. Z., Ghareeb, R. Y., Hafez, E. E., Behiry, S. I., & Abdelsalam, N. R. (2021). Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application. Science and Reports, 11, 1–9. https://doi.org/10.1038/s41598-021-89885-y

    Article  Google Scholar 

  52. Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104, 83–91. https://doi.org/10.1385/BTER:104:1:083

    Article  Google Scholar 

  53. Elsheery, N. I., Helaly, M. N., El-Hoseiny, H. M., & Alam-Eldein, S. M. (2020). Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy, 10, 558. https://doi.org/10.3390/agronomy10040558

    Article  Google Scholar 

  54. Palchoudhury, S., Jungjohann, K. L., Weerasena, L., Arabshahi, A., Gharge, U., Albattah, A., Miller, J., Patel, K., & Holler, R. A. (2018). Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer. RSC Advances, 8, 75–83. https://doi.org/10.1016/j.indcrop.2020.112290

    Article  Google Scholar 

  55. Mohamed, A. M., Mahmoud, E. A., & Younes, N. A. (2021). Impact of foliar application of carbon nanotube and benzyladenine on broccoli growth and head yield. Archives of Agriculture Sciences Journal, 4, 81–101.

    Article  Google Scholar 

  56. Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S., Prasad, S. M., Singh, P. K., Dubey, N. K., Pandey, A. C., & Chauhan, D. K. (2017). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry, 110, 167–177. https://doi.org/10.1016/j.plaphy.2016.06.015

    Article  Google Scholar 

  57. Al-Kaby, A. H., Al-Jarah, T. M., & Haji, J. H. (2021). The response of okra plants Abelmoschus esculentus (L) Moenth. Cultivated in greenhouses for foliar spraying with nano fertilizer NPK. In IOP Conference Series: Earth and Environmental Science, 735(1), 012044. https://doi.org/10.1088/1755-1315/735/1/012044

  58. Alabdallah, N. M., & Alzahrani, H. S. (2020). Impact of ZnO nanoparticles on growth of cowpea and okra plants under salt stress conditions. Biosciences Biotechnology Research Asia, 17, 329–40. https://doi.org/10.13005/bbra/2836

    Article  Google Scholar 

  59. Kumar, I., Bhattacharya, J., & Das, B. K. (2022). Efficacy of silver nanoparticles-based foliar spray application to control plant diseases, its effect on productivity, and risk assessment. Arabian Journal of Geosciences, 15, 390. https://doi.org/10.1007/s12517-022-09652-9

    Article  Google Scholar 

  60. Abdulhameed, M. F., Taha, A. A., & Ismail, R. A. (2021). Improvement of cabbage growth and yield by nanofertilizers and nanoparticles. Environmental Nanotechnology, Monitoring & Management, 15, 100437. https://doi.org/10.1016/j.enmm.2021.100437

    Article  Google Scholar 

  61. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889–892. https://doi.org/10.1126/science.11366

    Article  Google Scholar 

  62. Zhao, X., Zhou, Y., Min, J., Wang, S., Shi, W., Xing, G., 2012. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agric. Ecosyst. Environ.156. https://doi.org/10.1016/j.agee.2012.04.024

  63. Zhang, W. F., Dou, Z. X., He, P., Ju, X. T., Powlson, D., Chadwick, D., Norse, D., Lu, Y. L., Zhang, Y., Wu, L., & Chen, X. P. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences, 110, 8375–8380. https://doi.org/10.1073/pnas.1210447110

  64. Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L., Li, Q., Zeng, X. P., Liu, Y., & Li, Y. R. (2020). Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53, 1–20. https://doi.org/10.1186/s40659-020-00312-4

    Article  Google Scholar 

  65. Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U. A., Berugoda Arachchige, D. M., Kumarasinghe, A. R., Dahanayake, D., Karunaratne, V., & Amaratunga, G. A. (2017). Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano, 11, 1214–21. https://doi.org/10.1021/acsnano.6b07781

    Article  Google Scholar 

  66. Manjaiah, K.M., Mukhopadhyay, R., Paul, R., Datta, S.C., Kumararaja, P., Sarkar, B., 2019. Clay minerals and zeolites for environmentally sustainable agriculture in modified clay and zeolite nanocomposite materials. 309–329 https://doi.org/10.1016/B978-0-12-814617-0.00008-6

  67. Golbashy, M., Sabahi, H., Allahdadi, I., Nazokdast, H., & Hosseini, M. (2017). Synthesis of highly intercalated urea-clay nanocomposite via domestic montmorillonite as eco-friendly slow-release fertilizer. Archives of Agronomy and Soil Science, 63, 84–95. https://doi.org/10.1080/03650340.2016.1177175

    Article  Google Scholar 

  68. Abdel-Aziz, H. M., Hasaneen, M. N., & Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14(1), e0902. https://doi.org/10.5424/sjar/2016141-8205

    Article  Google Scholar 

  69. Rajonee, A. A., Nigar, F., Ahmed, S., & Huq, S. I. (2016). Synthesis of nitrogen nanofertilizer and its efficacy. Canadian Journal of Pure and Applied Sciences, 10, 3913–3919.

    Google Scholar 

  70. Pereira, E. I., Minussi, F. B., da Cruz, C. C., Bernardi, A. C., & Ribeiro, C. (2012). Urea–montmorillonite-extruded nanocomposites: A novel slow-release material. Journal of Agricultural and Food Chemistry, 60, 5267–72. https://doi.org/10.1021/jf3001229

    Article  Google Scholar 

  71. Hussein, H. S., Shaarawy, H. H., Hussien, N. H., & Hawash, S. I. (2019). Preparation of nano-fertilizer blend from banana peels. Bulletin of the National Research Centre, 43, 1–9. https://doi.org/10.1186/s42269-019-0058-1

    Article  Google Scholar 

  72. Wang, Y., Liu, M., Ni, B., & Xie, L. (2012). κ-Carrageenan–sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Industrial and Engineering Chemistry Research, 51, 1413–1422. https://doi.org/10.1021/ie2020526

    Article  Google Scholar 

  73. Shen, Y., Wang, H., Li, W., Liu, Z., Liu, Y., Wei, H., & Li, J. (2020). Synthesis and characterization of double-network hydrogels based on sodium alginate and halloysite for slow release fertilizers. International Journal of Biological Macromolecules, 164, 557–565. https://doi.org/10.1016/j.ijbiomac.2020.07.154

    Article  Google Scholar 

  74. An, T., Cheng, H., Qin, Y., Su, W., Deng, H., Wu, J., Liu, Z., & Guo, X. (2021). The dual mechanisms of composite biochar and biofilm towards sustainable nutrient release control of phosphate fertilizer: Effect on phosphorus utilization and crop growth. Journal of Cleaner Production, 311,. https://doi.org/10.1016/j.jclepro.2021.127329

  75. Shams, A. S., & Abbas, M. (2019). Can hydroxyapatite and boron oxide nano-fertilizers substitute calcium superphosphate and boric acid for broccoli (Brassica oleracea var. italica) grown on a heavy clay soil? Egyptian Journal of Horticulture, 46, 215–234. https://doi.org/10.21608/ejoh.2019.16154.1113

    Article  Google Scholar 

  76. Taşkın, M. B., Şahin, Ö., Taskin, H., Atakol, O., Inal, A., & Gunes, A. (2018). Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. Journal of Plant Nutrition, 41, 1148–1154. https://doi.org/10.1080/01904167.2018.1433836

    Article  Google Scholar 

  77. Liu, R., & Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Science and Reports, 4, 1–6. https://doi.org/10.1038/srep05686

    Article  Google Scholar 

  78. Maghsoodi, M. R., Ghodszad, L., & Lajayer, B. A. (2020). Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: Potentials, challenges and effects on plants. Environmental Technology & Innovation, 19, 100869. https://doi.org/10.1016/j.eti.2020.100869

    Article  Google Scholar 

  79. McKnight, M. M., Qu, Z., Copeland, J. K., Guttman, D. S., & Walker, V. K. (2020). A practical assessment of nano-phosphate on soybean (Glycine max) growth and microbiome establishment. Science and Reports, 10, 1–7. https://doi.org/10.1038/s41598-020-66005-w

    Article  Google Scholar 

  80. Imran, Amanullah, & Altawaha, A. R. (2022). Carbon assimilation and dry matter partitioning in soybean ameliorates with the integration of nano-black carbon, along with beneficial microbes and phosphorus fertilization. Journal of Plant Nutrition, 45(12), 1799–1812. https://doi.org/10.1080/01904167.2022.2035753

    Article  Google Scholar 

  81. Szameitat, A. E., Sharma, A., Minutello, F., Pinna, A., Er-Rafik, M., Hansen, T. H., Persson, D. P., Andersen, B., & Husted, S. (2021). Unravelling the interactions between nano-hydroxyapatite and the roots of phosphorus deficient barley plants. Environmental Sciences, 8, 444–459. https://doi.org/10.1039/D0EN00974A

    Article  Google Scholar 

  82. Niculescu, A. G., & Grumezescu, A. M. (2022). Applications of chitosan-alginate-based nanoparticles—An up-to-date review. Nanomaterial, 12, 186. https://doi.org/10.3390/nano12020186

    Article  Google Scholar 

  83. Nido, P.J., Migo, V., Maguyon-Detras, M.C., Alfafara, C., 2019. Process optimization potassium nanofertilizer production via ionotropic pre-gelation using alginate-chitosan carrier in MATEC web of conferences. EDP sciences 05001 https://doi.org/10.1051/matecconf/201926805001

  84. Rahale, C.S., Subramanian, K.S., Lakshmanan, A., 2021. Nanofertilizer in enhancing the production potentials of crops. Nanotechnology in plant growth promotion and protection: Recent advances and impacts 63–78. https://doi.org/10.1002/9781119745884.ch4

  85. Hassani, A., Tajali, A. A., Mazinani, S. H., & Hassani, M. (2015). Studying the conventional chemical fertilizers and nano-fertilizer of iron, zinc and potassium on quantitative yield of the medicinal plant of peppermint (Mentha piperita L.) in Khuzestan. International Journal of Agriculture Innovations and Research, 3, 1078–1082.

    Google Scholar 

  86. MáRquez-Prieto, A. K., Palacio-MáRquez, A., Sanchez, E., Macias-LóPez, B. C., PéRez-áLvarez, S., Villalobos-Cano, O., & Preciado-Rangel, P. (2022). Impact of the foliar application of potassium nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50, 12569. https://doi.org/10.15835/nbha50112569

    Article  Google Scholar 

  87. Khalifa, N. S., & Hasaneen, M. N. (2018). The effect of chitosan–PMAA–NPK nanofertilizer on Pisum sativum plants. 3 Biotech, 8, 193. https://doi.org/10.1007/s13205-018-1221-3

    Article  Google Scholar 

  88. El-Shal, R. M., El-Naggar, A. H., El-Beshbeshy, T. R., Mahmoud, E. K., El-Kader, N. I., Missaui, A. M., Du, D., Ghoneim, A. M., & El-Sharkawy, M. S. (2022). Effect of nano-fertilizers on alfalfa plants grown under different salt stresses in hydroponic system. Agriculture, 12, 1113. https://doi.org/10.3390/agriculture12081113

    Article  Google Scholar 

  89. Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., & Khorasani, R. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae, 210, 57–64. https://doi.org/10.1016/j.scienta.2016.07.003

    Article  Google Scholar 

  90. Elshayb, O. M., Farroh, K. Y., Amin, H. E., & Atta, A. M. (2021). Green synthesis of zinc oxide nanoparticles: Fortification for rice grain yield and nutrients uptake enhancement. Molecule, 26, 584. https://doi.org/10.3390/molecules26030584

    Article  Google Scholar 

  91. Management of nano-black carbon, phosphorous and bio fertilizer improve soil organic carbon and ensilage biomass of soybean and maize. (2021). Communications in Soil Science and Plant Analysis, 52, 2837–2851. https://doi.org/10.1080/00103624.2021.1966439

  92. Shaban, K. A., Esmaeil, M. A., Fattah, A. A., & Faroh, K. A. (2021). Effect of nano, bio and organic fertilizers on some soil physical properties and soybean productivity in saline soil. Asian Soil Research Journal, 4, 44–57. https://doi.org/10.9734/asrj/2020/v4i330095

    Article  Google Scholar 

  93. Mahmoud, E. (2022). Effect of nanomaterials on soil quality and yield of canola (Brassica napus) grown in heavy clayey soils Asmaa El-shahawy a. Egyptian Journal of Soil Science, 62, 361–71. https://doi.org/10.21608/EJSS.2022.152942.1522

    Article  Google Scholar 

  94. Helal, M. I., Husein, M. E., Walaa, G., & Mostafa, E. D. (2019). Characterization of agricultural residues-based nanobiochar and its efficiency in adsorption/desorption of nutrients. International Journal of Environment, 8, 130–141.

    Google Scholar 

  95. Liu, S. B., Tan, X. F., Liu, Y. G., Gu, Y. L., Zeng, G. M., Hu, X. J., Wang, H., Zhou, L., Jiang, L. H., & Zhao, B. B. (2016). Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Advance, 6, 71–80. https://doi.org/10.1038/srep05686

    Article  Google Scholar 

  96. Fazelian, N., Yousefzadi, M., 2022. Nano-biofertilizers for enhanced nutrient use efficiency. Nano-enabled agrochemicals in agriculture. In Nano-enabled Agrochemicals in Agriculture pp. 145-158. Academic Press https://doi.org/10.1016/B978-0-323-91009-5.00023-9

  97. Kubavat, D., Trivedi, K., Vaghela, P., Prasad, K., Vijay Anand, G. K., Trivedi, H., Patidar, R., Chaudhari, J., Andhariya, B., & Ghosh, A. (2020). Characterization of a chitosan-based sustained release nanofertilizer formulation used as a soil conditioner while simultaneously improving biomass production of Zea mays L. Land Degradation and Development, 17, 34–46. https://doi.org/10.1002/ldr.3629

    Article  Google Scholar 

  98. Tang, Q., Xu, Z., Hong, A., Zhang, X., Kah, M., Li, L., & Wang, Y. (2021). Response of soil enzyme activity and bacterial community to copper hydroxide nanofertilizer and its ionic analogue under single versus repeated applications. Science of The Total Environment, 796, 148974. https://doi.org/10.1016/j.scitotenv.2021.148974

    Article  Google Scholar 

  99. Rajput, V. D., Minkina, T., Ahmed, B., Singh, V. K., Mandzhieva, S., Sushkova, S., Bauer, T., Verma, K. K., Shan, S., van Hullebusch, E. D., & Wang, B. (2022). Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environmental Research, 210, 112891. https://doi.org/10.1016/j.envres.2022.112891

    Article  Google Scholar 

  100. Dhlamini, B., Paumo, H. K., Katata-Seru, L., & Kutu, F. R. (2020). Sulphate-supplemented NPK nanofertilizer and its effect on maize growth. Materials Research Express, 7(9), 095011. https://doi.org/10.1088/2053-1591/abb69d

    Article  Google Scholar 

  101. Dong, X., Li, G., Lin, Q., & Zhao, X. (2017). Quantity and quality changes of biochar aged for 5 years in soil under field conditions. CATENA, 159, 136–143. https://doi.org/10.1016/j.catena.2017.08.008

    Article  Google Scholar 

  102. Zeng, Z., Zhang, S. D., Li, T. Q., Zhao, F. L., He, Z. L., Zhao, H. P., Yang, X. E., Wang, H. L., Zhao, J., & Rafiq, M. T. (2013). Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. Journal of Zhejiang University. Science. B, 14, 1152–1161. https://doi.org/10.1631/jzus.B1300102

    Article  Google Scholar 

  103. Alidoust, D., & Isoda, A. (2014). Phytotoxicity assessment of γ-Fe2O3 nanoparticles on root elongation and growth of rice plant. Environment and Earth Science, 71, 5173–5182. https://doi.org/10.1007/s12665-013-2920-z

    Article  Google Scholar 

  104. Al-Burki, H. A., & Al-Ajeel, S. A. (2021). Effect of bio-fertilizer and nano-elements on growth and yield of two Phaseolus vulgaris L. varieties. Plant archives, 21, 1191–1194. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.187

    Article  Google Scholar 

  105. Taran, N. Y., Gonchar, O. M., Lopatko, K. G., Batsmanova, L. M., Patyka, M. V., & Volkogon, M. V. (2014). The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Research Letters, 9, 1–8. https://doi.org/10.1186/1556-276X-9-289

    Article  Google Scholar 

  106. Qureshi, A., Singh, D. K., & Dwivedi, S. (2018). Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences, 7, 3325–35.

    Article  Google Scholar 

  107. Ranjbar, S., Ramezanian, A., & Rahemi, M. (2020). Nano-calcium and its potential to improve ‘red delicious’ apple fruit characteristics. Horticulture, Environment, and Biotechnology, 61, 23–30. https://doi.org/10.1007/s13580-019-00168-y

    Article  Google Scholar 

  108. Rohani, M. Y., Zaipun, M. Z., & Norhayati, M. (1997). Effect of modified atmosphere on the storage life and quality of ‘Eksotika’ papaya. Journal of Tropical Agriculture and Food Science, 25, 103–113.

    Google Scholar 

  109. Seydmohammadi, Z., Roein, Z., & Rezvanipour, S. (2020). Accelerating the growth and flowering of Eustoma grandiflorum by foliar application of nano-ZnO and nano-CaCO3. Plant Physiology Reports, 25, 140–148. https://doi.org/10.1007/s40502-019-00473-9

    Article  Google Scholar 

  110. Torre, S., Borochov, A., & Halevy, A. H. (1999). Calcium regulation of senescence in rose petals. Physiologia Plantarum, 107, 214–219. https://doi.org/10.1034/j.1399-3054.1999.100209.x

    Article  Google Scholar 

  111. Deepa, M., Sudhakar, P., Nagamadhuri, K. V., Balakrishna, R. K., K. T., Giridhara, T. N., & Prasad. (2015). First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Applied Nanoscience, 5, 545–551. https://doi.org/10.1007/s13204-014-0348-8

  112. Gaiotti, F., Lucchetta, M., Rodegher, G., Lorenzoni, D., Longo, E., Boselli, E., Cesco, S., Belfiore, N., Lovat, L., Delgado-López, J. M., & Carmona, F. J. (2021). Urea-doped calcium phosphate nanoparticles as sustainable nitrogen nanofertilizers for viticulture: Implications on yield and quality of pinot gris grapevines. Agronomy, 11, 1026. https://doi.org/10.3390/agronomy11061026

    Article  Google Scholar 

  113. Sharma, P., Gautam, A., Kumar, V., & Guleria, P. (2021). In vitro exposed magnesium oxide nanoparticles enhanced the growth of legume Macrotyloma uniflorum. Environmental Science and Pollution Research, 29, 13635–13645. https://doi.org/10.1007/s11356-021-16828-5

    Article  Google Scholar 

  114. Delfani, M., Baradarn, F. M., N., Farrokhi, H., & Makarian. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis, 45, 530–540. https://doi.org/10.1080/00103624.2013.863911

  115. Xiao, L., Wang, S., Yang, D., Zou, Z., & Li, J. (2019). Physiological effects of MgO and ZnO nanoparticles on the Citrus maxima. Wuhan University of Technology-Materials Science Edition, 34, 243–253. https://doi.org/10.1007/s11595-019-2042-x

    Article  Google Scholar 

  116. Bolan, NS., Curtin, D., Adriano, DC., 2005. Acidity Encyclopedia of soils in the environment: 11–17 Elesvier Elsevier-Hanley and Belfus Inc https://doi.org/10.1016/B0-12-348530-4/00173-9.

  117. Thirunavukkarasu, M., Subramanian, K. S., Kannan, P., & Balaji, T. (2018). Response of nano-sulphur to the groundnut. International Journal of Chemical Studies, 6, 2067–2072. http://www.chemijournal.com/archives/?year=2018&vol=6&issue=3&ArticleId=2723&si=false.

    Google Scholar 

  118. Preetha, P. S., Subramanian, K. S., & Rahale, S. C. (2014). Sorption characteristics of nanozeolite based slow-release sulphur fertilizer. International Journal of Development Research, 4, 225–228.

    Google Scholar 

  119. Zareabyaneh, H., & Bayatvarkeshi, M. (2015). Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environment and Earth Science, 74, 3385–3393. https://doi.org/10.1007/s12665-015-4374-y

    Article  Google Scholar 

  120. Gogoi, R., Singh, P. K., Kumar, R., Nair, K. K., Alam, I., Srivastava, C., Yadav, S., Gopal, M., Choudhury, S. R., & Goswami, A. (2013). Suitability of nano-sulphur for biorational management of powdery mildew of okra (Abelmoschus esculentus Moench) caused by Erysiphe cichoracearum. Journal of Plant Pathology & Microbiology 4(4), 171–175. https://doi.org/10.4172/2157-7471.1000171

  121. Manjunatha, S. B., Biradar, D. P., & Aladakatti, Y. R. (2016). Nanotechnology and its applications in agriculture: A review. Journal of Farm Sciences, 29, 1–3.

    Google Scholar 

  122. Wang, F., Liu, X., Shi, Z., Tong, R., Adams, C. A., & Shi, X. (2016). Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants–A soil microcosm experiment. Chemosphere, 147, 88–97. https://doi.org/10.1016/j.chemosphere.2015.12.076

    Article  Google Scholar 

  123. Tarafdar, J. C., Raliya, R., Mahawar, H., & Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3, 257–262. https://doi.org/10.1007/s40003-014-0113-y

    Article  Google Scholar 

  124. Sheoran, P., Grewal, S., Kumari, S., & Goel, S. (2021). Enhancement of growth and yield, leaching reduction in Triticum aestivum using biogenic synthesized zinc oxide nanofertilizer. Biocatalysis and Agricultural Biotechnology, 32, 101938. https://doi.org/10.1016/j.bcab.2021.101938

    Article  Google Scholar 

  125. Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L. R. (2020). Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment, 738, 140240. https://doi.org/10.1016/j.scitotenv.2020.140240

    Article  Google Scholar 

  126. Mahdieh, M., Sangi, M. R., Bamdad, F., & Ghanem, A. (2018). Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition, 41, 2401–12. https://doi.org/10.1080/01904167.2018.1510517

    Article  Google Scholar 

  127. Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, 160–166. https://doi.org/10.1016/j.plaphy.2018.12.005

    Article  Google Scholar 

  128. Mandal, N., Datta, S. C., Manjaiah, K. M., Dwivedi, B. S., Kumar, R., & Aggarwal, P. (2018). Zincated nanoclay polymer composites (ZNCPCs): Synthesis, characterization, biodegradation and controlled release behaviour in soil. Polym-Plast Technol, 57, 1760–1770. https://doi.org/10.1080/03602559.2017.1422268

    Article  Google Scholar 

  129. Mandal, N., Datta, S. C., Manjaiah, K. M., Dwivedi, B. S., Nain, L., Kumar, R., & Aggarwal, P. (2018). Novel chitosan grafted zinc containing nanoclay polymer biocomposite (CZNCPBC): Controlled release formulation (CRF) of Zn 2+. Reactive and Functional Polymers, 127(13), 55–66. https://doi.org/10.1016/j.reactfunctpolym.2018.04.005

    Article  Google Scholar 

  130. Mandal, N., Datta, S. C., Manjaiah, K. M., Dwivedi, B. S., Kumar, R., & Aggarwal, P. (2018). Zincated nanoclay polymer composites (ZNCPCs): Synthesis, characterization, biodegradation and controlled release behaviour in soil. Polymer Plastic Technology and Engineering, 57(17), 1760–1770. https://doi.org/10.1080/03602559.2017.1422268

    Article  Google Scholar 

  131. Mandal, N., Datta, S. C., Manjaiah, K., Dwivedi, B., Kumar, R., & Aggarwal, P. (2019). Evaluation of zincated nanoclay polymer composite (ZCNPC) in releasing Zn, P and effect on soil enzyme activities in a wheat rhizosphere. European Journal of Soil Science, 70(6), 1164–1182. https://doi.org/10.1111/ejss.12860

    Article  Google Scholar 

  132. Adhikary, S., Mandal, N., Rakshit, R., Das, A., Kumar, V., & Kumari, N. (2020). Comparative evaluation of nano Zn carriers with conventional Zn sources in terms of release kinetics of Zn and Fe in a laboratory incubation experiment under inceptisol and alfisol. Journal of Plant Nutrition, 43, 1968–1979.

    Article  Google Scholar 

  133. Kathpalia, R., & Bhatla, S. C. (2018). Plant mineral nutrition. Plant physiology, development and metabolism (pp. 37–81). Springer.

    Chapter  Google Scholar 

  134. Cheng, W., Xu, X., Wu, F., & Li, J. (2016). Synthesis of cavity-containing iron oxide nanoparticles by hydrothermal treatment of colloidal dispersion. Materials Letters, 164, 210–212. https://doi.org/10.1016/j.matlet.2015.10.170

    Article  Google Scholar 

  135. Fathi, A., Zahedi, M., Torabian, S., & Khoshgoftar, A. (2017). Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. Journal of Plant Nutrition, 12, 1376–1385. https://doi.org/10.1039/C6EN00146G

    Article  Google Scholar 

  136. Yang, X., Alidoust, D., & Wang, C. (2020). Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiologiae Plantarum, 42, 1–1. https://doi.org/10.1007/s11738-020-03104-1

    Article  Google Scholar 

  137. Afzal, S., Sharma, D., & Singh, N. K. (2021). Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agent for boosting seed germination in rice (Oryza sativa L.). Environmental Science and Pollution Research, 28, 40275–40287. https://doi.org/10.1007/s11356-020-12056-5

    Article  Google Scholar 

  138. Drostkar, E., Talebi, R., & Kanouni, H. (2016). Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. Journal of Resources and Ecology, 4, 221–228.

    Google Scholar 

  139. Nemati Lafmejani, Z., Jafari, A. A., Moradi, P., & Ladan Moghadam, A. (2018). Impact of foliar application of iron-chelate and iron nano particles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). Journal of Essential Oil Bearing Plants, 21, 1374–84. https://doi.org/10.1080/0972060X.2018.1556122

    Article  Google Scholar 

  140. Guha, T., Gopal, G., Chatterjee, R., Mukherjee, A., & Kundu, R. (2020). Differential growth and metabolic responses induced by nano-scale zero valent iron in germinating seeds and seedlings of Oryza sativa L. cv. Swarna. Ecotoxicology and Environmental Safety, 204, 111104. https://doi.org/10.1080/03650340.2016.1177175

    Article  Google Scholar 

  141. Guha, T., Mukherjee, A., & Kundu, R. (2021). Nano-scale zero valent iron (nZVI) priming enhances yield, alters mineral distribution and grain nutrient content of Oryza sativa L. cv. Gobindobhog: A field study. Journal of Plant Growth Regulation, 25, 1–24. https://doi.org/10.1007/s00344-021-10335-0

    Article  Google Scholar 

  142. Askary, M., Amirjani, M. R., & Saberi, T. (2017). Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus. Journal of Plant Nutrition, 40, 974–982. https://doi.org/10.1080/01904167.2016.1262399

    Article  Google Scholar 

  143. Rehman, M., Liu, L., Wang, Q., Saleem, M. H., Bashir, S., Ullah, S., & Peng, D. (2019). Copper environmental toxicology, recent advances, and future outlook: A review. Environmental Science and Pollution Research, 26, 18003–16. https://doi.org/10.1007/s11356-019-05073-6

    Article  Google Scholar 

  144. Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–266. https://doi.org/10.1016/j.pbi.2009.05.006

    Article  Google Scholar 

  145. Rajput, V. D., Minkina, T., Suskova, S., Mandzhieva, S., Tsitsuashvili, V., Chapligin, V., & Fedorenko, A. (2018). Effects of copper nanoparticles (CuO NPs) on crop plants: A mini review. BioNanoScience, 8, 36–42. https://doi.org/10.1007/s12668-017-0466-3

    Article  Google Scholar 

  146. Abbasifar, A., Shahrabadi, F., & ValizadehKaji, B. (2020). Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition, 43, 1104–1118. https://doi.org/10.1080/01904167.2020.1724305

    Article  Google Scholar 

  147. Tauseef, A., Gupta, J., Rehman, A., & Uddin, I. (2021). Differential response of cowpea towards the CuO nanoparticles under Meloidogyne incognita stress. South African Journal of Botany, 139, 175–182. https://doi.org/10.1016/j.sajb.2021.02.017

    Article  Google Scholar 

  148. Hernández, H. H., Benavides-Mendoza, A., Ortega-Ortiz, H., Hernández-Fuentes, A. D., & Juárez-Maldonado, A. (2017). Cu Nanoparticles in chitosan-PVA hydrogels as promoters of growth, productivity and fruit quality in tomato. Emirates Journal of Food and Agriculture, 29(8), 573–580. https://doi.org/10.9755/ejfa.2016-08-1127

  149. Mikula, K., Izydorczyk, G., Skrzypczak, D., Mironiuk, M., Moustakas, K., Witek-Krowiak, A., & Chojnacka, K. (2020). Controlled release micronutrient fertilizers for precision agriculture–A review. Science of the Total Environment, 712, 136365. https://doi.org/10.1016/j.scitotenv.2019.136365

    Article  Google Scholar 

  150. Ekanayake, S. A., & Godakumbura, P. I. (2021). Synthesis of a dual-functional nanofertilizer by embedding ZnO and CuO nanoparticles on an alginate-based hydrogel. ACS Omega, 28, 262–272. https://doi.org/10.1021/acsomega.1c03271

    Article  Google Scholar 

  151. Elmer, W. H., & White, J. C. (2016). The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science Nano, 3, 1072–1079. https://doi.org/10.1039/C6EN00146G

    Article  Google Scholar 

  152. Dimkpa, C. O., Singh, U., Adisa, I. O., Bindraban, P. S., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2018). Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy, 8, 158. https://doi.org/10.3390/agronomy8090158

    Article  Google Scholar 

  153. Vaghar, M. S., Sayfzadeh, S., Zakerin, H. R., Kobraee, S., & Valadabadi, S. A. (2020). Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. Journal of Plant Nutrition, 43, 2740–2756. https://doi.org/10.1080/01904167.2020.1793180

    Article  Google Scholar 

  154. Shebl, A., Hassan, A. A., Salama, D. M., Abd El-Aziz, M. E., & Abd Elwahed, M. S. (2020). Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L). Heliyon, 6,. https://doi.org/10.1016/j.heliyon.2020.e03596

  155. Yue, L., Feng, Y., Ma, C., Wang, C., Chen, F., Cao, X., Wang, J., White, J. C., Wang, Z., & Xing, B. (2022). Molecular mechanisms of early flowering in tomatoes induced by manganese ferrite (MnFe2O4) nanomaterials. ACS Nano, 16, 5636–5646. https://doi.org/10.1021/acsnano.1c10602

    Article  Google Scholar 

  156. Tian, H., Ghorbanpour, M., & Kariman, K. (2018). Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Industrial Crops and Products, 126, 403–414. https://doi.org/10.1016/j.indcrop.2018.10.042

    Article  Google Scholar 

  157. Ye, Y., Medina-Velo, I. A., Cota-Ruiz, K., Moreno-Olivas, F., & Gardea-Torresdey, J. L. (2019). Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicology and Environmental Safety, 184, 109671. https://doi.org/10.1016/j.ecoenv.2019.109671

    Article  Google Scholar 

  158. Shi, Y. C., Sun, B., & Liu, W. Q. (2012). Sucrose phosphate synthase plays a key role in boron-promoted sucrose synthesis in tobacco leaves. Journal of Plant Nutrition and Soil Science, 175, 854–859. https://doi.org/10.1002/jpln.201100423

    Article  Google Scholar 

  159. Zhou, G. F., Peng, S. A., Liu, Y. Z., Wei, Q. J., Han, J., & Islam, M. (2014). The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Tree, 28, 295–307. https://doi.org/10.1007/s00468-013-0949-y

    Article  Google Scholar 

  160. Taherian, M., Bostani, A., & Omidi, H. (2019). Boron and pigment content in alfalfa affected by nano fertilization under calcareous conditions. Journal of Trace Elements in Medicine and Biology, 53, 136–143. https://doi.org/10.1016/j.jtemb.2019.02.014

    Article  Google Scholar 

  161. Noaema, AH, Alhasany, A.R., 2020. Effect of spraying nanofertilizers of potassium and boron on growth and yield of wheat (Triticum aestivum L.). IOP Conf. Ser. Mater. Sci. Eng. 012012 https://doi.org/10.1088/1757-899X/871/1/012012

  162. Vishekaii, Z. R., Soleimani, A., Fallahi, E., Ghasemnezhad, M., & Hasani, A. (2019). The impact of foliar application of boron nano-chelated fertilizer and boric acid on fruit yield, oil content, and quality attributes in olive (Olea europaea L.). Scientia Horticulturae, 257, 108689. https://doi.org/10.1016/j.scienta.2019.108689

    Article  Google Scholar 

  163. Karthika, K. S., Rashmi, I., & Parvathi, M. S. (2018). Biological functions, uptake and transport of essential nutrients in relation to plant growth. Plant nutrients and abiotic stress tolerance (pp. 1–49). Springer.

    Google Scholar 

  164. Uchida, R., 2000. Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. Plant nutrient management in Hawaii’s soils. Trop Subtrop 4, 31–55. http://www.ctahr.hawaii.edu/oc/freepubs/pdf/pnm3.pdf

  165. Zewail, R. M., Ali, M., El-Gamal, I. S., Al-Maracy, S. H., Islam, K. R., Elsadek, M., Azab, E., Gobouri, A. A., ElNahhas, N., Mohamed, M. H., & El-Desouky, H. S. (2021). Interactive effects of arbuscular mycorrhizal inoculation with nano boron, zinc, and molybdenum fertilization on stevioside contents of stevia (Stevia rebaudiana L.). Plant Horticult, 7, 260. https://doi.org/10.3390/horticulturae7080260

    Article  Google Scholar 

  166. Azizi, E., Mirbolook, A., & Behdad, A. (2017). The effect of different concentrations of nano-molybdenum and calcium fertilizers on growth parameters and nodulation of chickpea (Cicer arietinum L.). Journal of Crop Production, 9, 179–199. https://doi.org/10.22069/ejcp.2017.10095.1794

    Article  Google Scholar 

  167. Singh, A. L., Jat, R. S., Chaudhari, V., Bariya, H., & Sharma, S. T. (2010). Toxicities and tolerance of mineral elements boron, cobalt, molybdenum and nickel in crop plants. Plant Stress, 4, 31–56.

    Google Scholar 

  168. Al-Mamun, M. R., Hasan, M. R., Ahommed, M. S., Bacchu, M. S., Ali, M. R., & Khan, M. Z. (2021). Nanofertilizers towards sustainable agriculture and environment. Environmental Technology & Innovation, 23, 101658.

    Article  Google Scholar 

  169. Yusuf, M., Fariduddin, Q., Hayat, S., & Ahmad, A. (2011). Nickel: An overview of uptake, essentiality and toxicity in plants. Bulletin of Environment Contamination and Toxicology, 86, 1–7. https://doi.org/10.1007/s00128-010-0171-1

    Article  Google Scholar 

  170. Rao, K. V. M., & Sresty, T. V. S. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L.) Millspauga in response to Zn and Ni stress. Plant Science, 157, 113–128. https://doi.org/10.1016/S0168-9452(00)00273-9

    Article  Google Scholar 

  171. Chen, C., Huang, D., & Liu, J. (2009). Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean, 37, 304–313. https://doi.org/10.1002/clen.200800199

    Article  Google Scholar 

  172. Gajewska, E., Wielanek, M., Bergier, K., & Skłodowska, M. (2009). Nickel-induced depression of nitrogen assimilation in wheat roots. Acta Physiologiae Plantarum, 31, 1291–1300. https://doi.org/10.1007/s11738-009-0370-8

    Article  Google Scholar 

  173. Tsygvintsev, P. N., Goncharova, L. I., Manin, K. V., & Rachkova, V. M. (2018). Morphophysiological features of wheat (Triticum aestivum L.) seedlings upon exposure to nickel nanoparticles. Sel’skokhozyaĭstvennaya Biologiya, 53, 578–586.

    Article  Google Scholar 

  174. Rathore, S.S., Shekhawat, K., 2022. Eco-friendly, non-conventional approaches for sustaining agriculture in an organic perspective. In: Handbook of research on green technologies for sustainable management of agricultural resources 66-80. IGI Global

  175. Cuong, T. X., Ullah, H., Datta, A., & Hanh, T. C. (2017). Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Science, 24, 283–290. https://doi.org/10.1016/j.rsci.2017.06.002

    Article  Google Scholar 

  176. Wang, Z., Zhu, W., Chen, F., Yue, L., Ding, Y., Xu, H., Rasmann, S., & Xiao, Z. (2021). Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Science of the Total Environment, 778, 146378. https://doi.org/10.1016/j.scitotenv.2021.146378

    Article  Google Scholar 

  177. Gong, D., Zhang, X., Yao, J., Dai, G., Yu, G., Zhu, Q., Gao, Q., & Zheng, W. (2021). Synergistic effects of bast fiber seedling film and nano-silicon fertilizer to increase the lodging resistance and yield of rice. Science and Reports, 11, 1–8. https://doi.org/10.1038/s41598-021-92342-5

    Article  Google Scholar 

  178. Feng, R., Wei, C., & Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87, 58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002

    Article  Google Scholar 

  179. Gupta, M., & Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science, 7, 234638. https://doi.org/10.3389/fpls.2016.02074

    Article  Google Scholar 

  180. Galić, L., Vinković, T., Ravnjak, B., & Lončarić, Z. (2021). Agronomic biofortification of significant cereal crops with selenium—A review. Agronomy, 11(5), 1015. https://doi.org/10.3390/agronomy11051015

    Article  Google Scholar 

  181. Schiavon, M., Nardi, S., Dalla Vecchia, F., & Ertani, A. (2020). Selenium biofortification in the 21st century: Status and challenges for healthy human nutrition. Plant Soil, 453, 245–270. https://doi.org/10.1007/s11104-020-04635-9

    Article  Google Scholar 

  182. Domokos-Szabolcsy, E., Marton, L., Sztrik, A., Babka, B., Prokisch, J., & Fari, M. (2012). Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regulation, 68, 525–531. https://doi.org/10.1007/s10725-012-9735-x

    Article  Google Scholar 

  183. Domokos-Szabolcsy, E., Abdalla, N., Alshaal, T., Sztrik, A., Márton, L., & El-Ramady, H. (2014). In vitro comparative study of two Arundo donax L ecotypes’ selenium tolerance. International Journal of Horticultural Science, 20, 119–122.

    Article  Google Scholar 

  184. Chausali, N., Saxena, J., & Prasad, R. (2021). Nanobiochar and biochar based nanocomposites: Advances and application. Journal of Agricultural Research, 5, 100191. https://doi.org/10.1016/j.jafr.2021.100191

    Article  Google Scholar 

  185. Bairwa, P., Kumar, N., Devra, V., & Abd-Elsalam, K. A. (2023). Nano-biofertilizers synthesis and applications in agroecosystems. Agrochemical, 2, 118–134. https://doi.org/10.3390/agrochemicals2010009

    Article  Google Scholar 

  186. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecule, 21, 573. https://doi.org/10.3390/molecules21050573

    Article  Google Scholar 

  187. Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King saud University-science, 26, 1–20. https://doi.org/10.1007/s11356-020-12056-5

    Article  Google Scholar 

  188. Mala, R., Celsia Arul Selvaraj, R., Barathi Sundaram, V., Rajan, Blessina Siva Shanmuga., & R, Maheswari Gurusamy U,. (2017). Evaluation of nano structured slow release fertilizer on the soil fertility, yield and nutritional profile of Vigna radiata. Recent Patents on Nanotechnology, 11, 50–62. https://doi.org/10.2174/1872210510666160727093554

    Article  Google Scholar 

  189. Rahman, K. M., & Zhang, D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability, 10, 759. https://doi.org/10.3390/su10030759

    Article  Google Scholar 

  190. Singh, P., Ghosh, D., Manyapu, V., Yadav, M., & Majumder, S. (2019). Synergistic impact of iron (iii) oxide nanoparticles and organic waste on growth and development of Solanum lycopersicum plants: New paradigm in nano biofertilizer. Plant Arch., 19, 339–344.

    Google Scholar 

  191. Gahoi, P., Omar, R. A., Verma, N., & Gupta, G. S. (2021). Rhizobacteria and acylated homoserine lactone-based nanobiofertilizer to improve growth and pathogen defense in Cicer arietinum and Triticum aestivum plants. ACS Agricultural Science & Technology, 1, 240–252. https://doi.org/10.1021/acsagscitech.1c00039

    Article  Google Scholar 

  192. Azwar, E., Mahari, W. A., Chuah, J. H., Vo, D. V., Ma, N. L., Lam, W. H., & Lam, S. S. (2018). Transformation of biomass into carbon nanofiber for supercapacitor application–A review. International Journal of Hydrogen Energy, 43, 20811–20821. https://doi.org/10.1016/j.ijhydene.2018.09.111

    Article  Google Scholar 

  193. Joseph, S., Anawar, H. M., Storer, P., Blackwell, P., Chee, C. H., Yun, L. I., Munroe, P., Donne, S., Horvat, J., Jianli, W. A., & Solaiman, Z. M. (2015). Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere, 25, 749–760. https://doi.org/10.1016/S1002-0160(15)30056-4

    Article  Google Scholar 

  194. An, X., Wu, Z., Yu, J., Cravotto, G., Liu, X., Li, Q., & Yu, B. (2020). Copy Ro lysis of biomass, bentonite, and nutrients as a new strategy for the synthesis of improved biochar-based slow-release fertilizers. ACS Sustainable Chemistry & Engineering, 8, 3181–3190. https://doi.org/10.1016/j.jclepro.2021.127329

    Article  Google Scholar 

  195. Wen, P., Wu, Z., He, Y., Ye, B. C., Han, Y., Wang, J., & Guan, X. (2016). Microwave-assisted synthesis of a semi-interpenetrating polymer network slow-release nitrogen fertilizer with water absorbency from cotton stalks. ACS Sustainable Chemistry & Engineering, 4, 6572–6579. https://doi.org/10.1021/acssuschemeng.6b01466

    Article  Google Scholar 

  196. Yang, J., Liu, T., Liu, H., Zhai, L., Wang, M., Du, Y., Chen, Y., Yang, C., Xiao, H., & Wang, H. (2019). Dimethylolurea as a novel slow-release nitrogen source for nitrogen leaching mitigation and crop production. Journal of Agriculture and Food Chemistry, 67, 7616–7625. https://doi.org/10.1021/acs.jafc.9b01432

    Article  Google Scholar 

  197. Ali, S., Rizwan, M., Noureen, S., Anwar, S., Ali, B., Naveed, M., AbdAllah, E. F., Alqarawi, A. A., & Ahmad, P. (2019). Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 26, 1128–1139. https://doi.org/10.1007/s11356-019-04554-y

    Article  Google Scholar 

  198. Rajiv, P., & Vanathi, P. (2018). Effect of Parthenium based vermicompost and zinc oxide nanoparticles on growth and yield of Arachis hypogaea L. in zinc deficient soil. Biocatalysis and Agricultural Biotechnology, 13, 251–257.

    Article  Google Scholar 

  199. Roozbahani, A., & Mohammadkhani, E. (2017). Evaluation effect of vermicompost and nano iron on agro-physiological traits of corn (Zea mays L.). Journal of Crop Nutrition Science, 3(1), 59–68.

  200. Ahanger, M. A., Qi, M., Huang, Z., Xu, X., Begum, N., Qin, C., Zhang, C., Ahmad, N., Mustafa, N. S., Ashraf, M., & Zhang, L. (2021). Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicology and Environmental Safety, 216, 112195. https://doi.org/10.1007/s11356-020-12056-5

    Article  Google Scholar 

  201. Fellet, G., Pilotto, L., Marchiol, L., & Braidot, E. (2021). Tools for nano-enabled agriculture: Fertilizers based on calcium phosphate, silicon, and chitosan nanostructures. Agronomy, 11, 1239. https://doi.org/10.3390/agronomy11061239

    Article  Google Scholar 

  202. Wu, H., & Li, Z. (2022). Recent advances in nano-enabled agriculture for improving plant performance. The Crop Journal, 10, 1–12. https://doi.org/10.1016/j.cj.2021.06.002

    Article  Google Scholar 

  203. Prasad, T. N., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., Sreeprasad, T. S., Sajanlal, P. R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35, 905–27. https://doi.org/10.1080/01904167.2012.663443

    Article  Google Scholar 

  204. Fatima, F., Hashim, A., & Anees, S. (2021). Efficacy of nanoparticles as nanofertilizer production: A review. Environmental Science and Pollution Research, 28, 1292–1303. https://doi.org/10.1007/s11356-020-11218-9

    Article  Google Scholar 

  205. Rezaei, M., & Abbasi, H. (2014). Foliar application of nanochelate and non-nanochelate of zinc on plant resistance physiological processes in cotton (Gossipium hirsutum L.). Iranian Journal of Plant Physiology, 4, 1137–1144.

    Google Scholar 

  206. Hernandez-Viezcasa, J. A., Castillo-Michelb, H., Servina, A. D., Peralta-Videaa, J. R., & Gardea-Torresdey, J. L. (2011). Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chemical Engineering Journal, 170, 346–352. https://doi.org/10.1016/j.cej.2010.12.021

    Article  Google Scholar 

  207. Mittal, D., Kaur, G., Singh, P., Yadav, K. and Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology, 2, 579954. https://doi.org/10.3389/fnano.2020.579954

  208. Miranda-Villagómez, E., Trejo-Téllez, L. I., Gómez-Merino, F. C., Sandoval-Villa, M., Sánchez-García, P., & Aguilar-Méndez, M. Á. (2019). Nanophosphorus fertilizer stimulates growth and photosynthetic activity and improves P status in rice. Journal of Nanomaterials. https://doi.org/10.1155/2019/5368027

    Article  Google Scholar 

  209. Mehta, Pallavi, C. M., Srivastava, R., Arora, S., & Sharma, A. K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6,. https://doi.org/10.1007/s13205-016-0567-7

  210. Grangah, M. F., Rashidi, V., Mirshekari, B., Behrouzyar, E. K., & Farahvash, F. (2020). Effects of nano-fertilizers on physiological and yield characteristics of pinto bean cultivars under water deficit stress. Journal of Plant Nutrition, 43, 2898–2910. https://doi.org/10.1080/01904167.2020.1799000

    Article  Google Scholar 

  211. Raliya, R., Biswas, P., & Tarafdar, J. C. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports, 5, 22–26. https://doi.org/10.1016/j.btre.2014.10.009

    Article  Google Scholar 

  212. Dubey, A. N., Chattopadhyaya, N., & Mandal, N. (2021). Variation in soil microbial population and soil enzymatic activities under zincated nanoclay polymer composites (ZNCPCs), nano-ZnO and Zn solubilizers in rice rhizosphere. Agricultural Research, 10, 21–31.

    Article  Google Scholar 

  213. Kumar, A., Rakshit, R., Bhowmik, A., Mandal, N., Das, A., & Adhikary, S. (2019). Nanoparticle-induced changes in resistance and resilience of sensitive microbial indicators towards heat stress in soil. Sustainability, 11, 862. https://doi.org/10.3390/su11030862

    Article  Google Scholar 

  214. Kah, M. (2015). Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry, 3, 64. https://doi.org/10.3389/fchem.2015.00064

    Article  Google Scholar 

  215. Gopalakrishnan, Nair, P.M., 2018. Toxicological impact of carbon nanomaterials on plants. In: Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E. (eds) Nanotechnology, food security and water treatment. Environmental chemistry for a sustainable world. Springer, Cham https://doi.org/10.1007/978-3-319-70166-0_5

  216. Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528, 51–59. https://doi.org/10.1038/nature15743

    Article  Google Scholar 

  217. Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13, 677–684. https://doi.org/10.1038/s41565-018-0131-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Gandhi Institute of Technology and Management and ICAR-Central Agroforestry Research Institute for the support of resources.

Funding

The authors are thankful for the grant received from the Gandhi Institute of Technology and Management in the form of GITAM–Research Seed Grants–RSG with ref. No-2022/0149 to carry out the work.

Author information

Authors and Affiliations

Authors

Contributions

M.K.R.—conceptualization, methodology, resources, writing, review, and editing; R.A.—resources and writing; S.D. and N.M.—supervision, drafting, and reviewing; P.R.—reviewing, comments, and suggestions; A.A. and J.R.K—supervision and reviewing. All authors viewed and commented on the initial version of the manuscript.

Corresponding authors

Correspondence to M. Kiranmai Reddy, Sovan Debnath or Janardhan Reddy Koduru.

Ethics declarations

Competing interests

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.K., Asthana, R., Debnath, S. et al. Nanofertilizers for Sustainable Crop Production: A Comprehensive Review. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01413-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01413-0

Keywords

Navigation