Skip to main content
Log in

Himalayan Fern Cheilanthes bicolor Mediated Fabrication and Characterization of Iron Nanoparticles with Antimicrobial Potential

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The green synthesis of nano-powders assumes great significance because of its high applicability and synthesis under ambient conditions via an amalgamation of plant-derived extracts. The formulation of small-sized iron particles using relatively underexplored curative fern Cheilanthes bicolor extract was investigated. The derivation of fern components was worked out, and anti-microbial efficacy was determined. This fern is rich in numerous phytochemicals like phenol, tannins, and reducing sugars which contributed in the generation of nano-iron particles. The effects of several decisive factors led to the optimal synthesis of the desired particles. The size, magnetic behavior, and physical aspects were elucidated by methods like UV–VIS spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The findings revealed that the nanoparticles were amorphous in shape with an average size of 40–60 nm. These particles were tested against microorganisms and ultimately revealed their potency against diverse microflora. These iron nanoparticles demonstrated anti-microbial efficacy and displayed a MIC value of 6.25 µg/ml and 3.125 µg/ml against clinal pathogens Staphylococcus aureus and Escherichia coli, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barman, K., Dutta, P., Chowdhury, D., & Baruah, P. K. (2021). Green biosynthesis of copper oxide nanoparticles using waste colocasia esculenta leaves extract and their application as recyclable catalyst towards the synthesis of 1,2,3-triazoles. BioNanoScience, 11, 189–199. https://doi.org/10.1007/s12668-021-00826-5

    Article  Google Scholar 

  2. Udhayan, S., Udayakumar, R., Sagayaraj, R., & Gurusamy, K. (2021). Evaluation of bioactive potential of a tragia involucrata healthy leaf extract @ ZnO nanoparticles. BioNanoScience, 11, 703–719. https://doi.org/10.1007/s12668-021-00864-z

    Article  Google Scholar 

  3. Rao, K. J., Korumilli, T., Jakkala, S., & Singh, K. (2021). Optimization of the one-step green synthesis of silver and gold nanoparticles using aqueous Athyrium filix femina extract using the taguchi method. BioNanoScience, 11(4), 915–922. https://doi.org/10.1007/s12668-021-00909-3

    Article  Google Scholar 

  4. Shehabeldine, A. M., Elbahnasawy, M. A., & Hasaballah, A. I. (2021). Green phytosynthesis of silver nanoparticles using Echinochloa stagnina extract with reference to their antibacterial, cytotoxic, and larvicidal activities. BioNanoScience, 11(2), 526–538. https://doi.org/10.1007/s12668-021-00846-1

    Article  Google Scholar 

  5. Cai, J., Chen, S., Ji, M., Hu, J., Ma, Y., & Qi, L. (2014). Organic additive-free synthesis of mesocrystalline hematite nanoplates via two-dimensional oriented attachment. CrystEngComm, 16(8), 1553–1559. https://doi.org/10.1039/c3ce41716f

    Article  Google Scholar 

  6. Cuong, N. D., Khieu, D. Q., Hoa, T. T., Quang, D. T., Viet, P. H., Lam, T. D., & …& Hieu, N. van. (2015). Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor. Materials Research Bulletin, 68, 302–307. https://doi.org/10.1016/j.materresbull.2015.03.069

    Article  Google Scholar 

  7. Ebrahiminezhad, A., Varma, V., Yang, S., & Berenjian, A. (2016). Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Applied Microbiology and Biotechnology, 100(1), 173–180. https://doi.org/10.1007/s00253-015-6977-3

    Article  Google Scholar 

  8. Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1–2), 8–23. https://doi.org/10.1016/j.cis.2011.04.003

    Article  Google Scholar 

  9. Pan, Y., Du, X., Zhao, F., & Xu, B. (2012). Magnetic nanoparticles for the manipulation of proteins and cells. Chemical Society Reviews, 41(7), 2912–2942. https://doi.org/10.1039/c2cs15315g

    Article  Google Scholar 

  10. Dobson, J. (2006). Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Therapy, 13(4), 283–287. https://doi.org/10.1038/sj.gt.3302720

    Article  MathSciNet  Google Scholar 

  11. Busolo, M. A., & Lagaron, J. M. (2012). Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Science and Emerging Technologies, 16, 211–217. https://doi.org/10.1016/j.ifset.2012.06.008

    Article  Google Scholar 

  12. Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A. K., Taghizadeh, S., Ghasemi, Y., & Berenjian, A. (2018). Plant-mediated synthesis and applications of iron nanoparticles. Molecular Biotechnology, 60(2), 154–168. https://doi.org/10.1007/s12033-017-0053-4

    Article  Google Scholar 

  13. Yang, J., Zou, P., Yang, L., Cao, J., Sun, Y., Han, D., & …& Kong, X. (2014). A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Applied Surface Science, 303, 425–432. https://doi.org/10.1016/j.apsusc.2014.03.018

    Article  Google Scholar 

  14. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266. https://doi.org/10.1016/j.watres.2016.05.019

    Article  Google Scholar 

  15. Beheshtkhoo, N., Kouhbanani, M. A. J., Savardashtaki, A., Amani, A. M., & Taghizadeh, S. (2018). Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Applied Physics A, 124(5), 363. https://doi.org/10.1007/s00339-018-1782-3

    Article  Google Scholar 

  16. Aghajani, Z., Engashte-Vahed, A. A., & Zand-Monfared, M. R. (2017). Biosynthesized Fe3O4 nanoparticles: It’s magnetic and photocatalysis properties. Journal of Materials Science: Materials in Electronics, 28(22), 17338–17343. https://doi.org/10.1007/s10854-017-7666-z

    Article  Google Scholar 

  17. Chauhan, S., Seth, C. A., & Seth, A. (2015). Bioprospecting thermophilic microorganisms from hot springs of western Himalayas for xylanase production and its statistical optimization by using response surface methodology. Journal of Pure and Applied Microbiology, 9(2): 1417–1428. https://www.researchgate.net/publication/283819292

  18. Singh, P., Kumari, A., Attri, C., & Seth, A. (2019). Efficient lactamide synthesis by fed-batch method using nitrile hydratase of Rhodococcus pyridinivorans NIT-36. Journal of Microbiology, Biotechnology and Food Sciences, 9(3), 567–572. https://doi.org/10.15414/jmbfs.2019/20.9.3.567-572

  19. Singh, P., Kumari, A., Chauhan, K., Attri, C., & Seth, A. (2020). Nitrile hydratase mediated green synthesis of lactamide by immobilizing Rhodococcus pyridinivorans NIT-36 cells on N, N′-Methylene bis-acrylamide activated chitosan. International Journal of Biological Macromolecules, 161, 168–176. https://doi.org/10.1016/j.ijbiomac.2020.06.004

    Article  Google Scholar 

  20. Din, M. I., & Rani, A. (2018). Selection of optimum strategies for the fabrication of plant-mediated metal nanoparticles: Emerging problems in sustainability. Critical Reviews in Analytical Chemistry, 48(5), 406–415. https://doi.org/10.1080/10408347.2018.1444464

    Article  Google Scholar 

  21. Lohrasbi, S., Kouhbanani, M. A. J., Beheshtkhoo, N., Ghasemi, Y., Amani, A. M., & Taghizadeh, S. (2019). Green synthesis of iron nanoparticles using Plantago major leaf extract and their application as a catalyst for the decolorization of azo dye. BioNanoScience, 9(2), 317–322. https://doi.org/10.1007/s12668-019-0596-x

    Article  Google Scholar 

  22. Mahanty, S., Bakshi, M., Ghosh, S., Chatterjee, S., Bhattacharyya, S., Das, P., …, & Chaudhuri, P. (2019). Green synthesis of iron oxide nanoparticles mediated by filamentous fungi isolated from Sundarban mangrove ecosystem, India. BioNanoScience, 9(3), 637–651. https://doi.org/10.1007/s12668-019-00644-w

  23. Rawat, S., & Singh, J. (2021). Green synthesis of iron nanoparticles using Plumeria and Jatropha: Characterization and investigation of their adsorption, regeneration and catalytic degradation Efficiencies. BioNanoScience, 11(4), 1142–1153. https://doi.org/10.1007/s12668-021-00894-7

    Article  Google Scholar 

  24. Sutradhar, P., Saha, M., & Maiti, D. (2014). Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. Journal of Nanostructure in Chemistry, 4(1), 1–6. https://doi.org/10.1007/s40097-014-0086-1

    Article  Google Scholar 

  25. Rajput, N. (2015). Methods of preparation of nanoparticles-A review. International Journal of Advances in Engineering & Technology, 7, 1806–1811.

    Google Scholar 

  26. Atarod, M., Nasrollahzadeh, M., & Sajadi, S. M. (2016). Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 465, 249–258. https://doi.org/10.1016/j.jcis.2015.11.060

    Article  Google Scholar 

  27. Seth, M. K., Seth, A., & Negi, H. C. (2004a). Pteridophytic flora of Kinnaur, Himachal Pradesh Part-I: A general account of Kinnaur District and eight species belonging to suborder Pteridineae of order Pteridales. Indian Fern Journal, 21, 45–62. https://www.researchgate.net/publication/343254287

  28. Seth, M. K., Seth, A., & Negi, H. C. (2004b). Pteridophytic flora of Kinnaur, Himachal Pradesh. Part II: 13 common pteridophytes belonging to families Hypodematiaceae, Athyriaceae, Dryopteridaceae, Selaginellaceae and Equisetaceae. Indian Fern Journal, 21, 63–80. https://www.researchgate.net/publication/343254671

  29. Seth M. K., Seth A., & Negi H. C. (2004c). Pteridophytic flora of Kinnaur, Himachal Pradesh. Part III: Nine common Pteridophytes belonging to families Dennstaedtiaceae, Thelypteridaceae and Aspleniaceae. Phytotaxonomy 4: 25–35. Phytotaxonomy, 4, 25–35. https://www.researchgate.net/publication/343255187

  30. Singh, S. K., & Rajkumar, S. D. (2017). Biodiversity and indigenous use of medicinal ferns in Chandraprabha Wildlife Sanctuary, Chandauli, Uttar Pradesh. International Journal of Research Studies in Biosciences, 5(11), 19–25. https://doi.org/10.20431/2349-0365.0511004

  31. Goswami, H. K., Sen, K., & Mukhopadhyay, R. (2016). Pteridophytes: Evolutionary boon as medicinal plants. Plant Genetic Resources, 14(4), 328–355. https://doi.org/10.1017/S1479262116000290

    Article  Google Scholar 

  32. Asghar, M. A., Zahir, E., Shahid, S. M., Khan, M. N., Asghar, M. A., Iqbal, J., & Walker, G. (2018). Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT, 90, 98–107. https://doi.org/10.1016/j.lwt.2017.12.009

    Article  Google Scholar 

  33. Harborne, J. B. (1984). Methods of plant analysis. In: Phytochemical Methods. Springer, Dordrecht. Pp. 1–36. https://doi.org/10.1007/978-94-009-5570-7_1

  34. Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the Total Environment, 466–467, 210–213. https://doi.org/10.1016/j.scitotenv.2013.07.022

    Article  Google Scholar 

  35. Jyoti, B., & K., Chauhan, K., Attri, C., & Seth, A. (2017). Improving stability and reusability of Rhodococcus pyridinivorans NIT-36 nitrilase by whole cell immobilization using chitosan. International Journal of Biological Macromolecules, 103, 8–15. https://doi.org/10.1016/j.ijbiomac.2017.05.012

    Article  Google Scholar 

  36. Rao, N. H., Lakshmidevi, N., Pammi, S. V. N., Kollu, P., Ganapaty, S., & Lakshmi, P. (2016). Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Materials Science and Engineering C, 62, 553–557. https://doi.org/10.1016/j.msec.2016.01.072

    Article  Google Scholar 

  37. Ban, S. H., Kim, J. E., Pandit, S., & Jeon, J. G. (2012). Influences of Dryopteris crassirhizoma extract on the viability, growth and virulence properties of Streptococcus mutans. Molecules, 17(8), 9231–9244. https://doi.org/10.3390/molecules17089231

    Article  Google Scholar 

  38. Ghosh, P. G., Mukhopadhyay, R., & Gupta, K. (2005). Antifungal activity of the crude extracts and extracted phenols from gametophytes and sporophytes of two species of Adiantum. Taiwania, 50(4), 272–283. https://doi.org/10.6165/tai.2005.50(4).272

    Article  Google Scholar 

  39. Iwashina, T., & Matsumoto, S. (2011). Flavonoid properties of six Asplenium Species in Vanuatu and New Caledonia, and distribution of flavonoid and related compounds in Asplenium. Bulletin of the National Museum of Nature and Science, Series B, 37(3), 133–145. https://www.researchgate.net/publication/284687965

  40. Kardong, D., Upadhyaya, S., & Saikia, L. R. (2013). Screening of phytochemicals, antioxidant and antibacterial activity of crude extract of Pteridium aquilinum Kuhn. Journal of Pharmacy Research, 6(1), 179–182. https://doi.org/10.1016/j.jopr.2012.11.037

    Article  Google Scholar 

  41. Paul, K. R., Irudayaraj, V., Johnson, M., & Patric, D. R. (2011). Phytochemical and anti-bacterial activity of epidermal glands extract of Christella parasitica (L.) H. Lev. Asian Pacific Journal of Tropical Biomedicine, 1(1), 8–11. https://doi.org/10.1016/S2221-1691(11)60059-2

  42. Niranjan Reddy, V. L., Ravikanth, V., Prabhakar Rao, T., Diwan, P., & v., & Venkateswarlu, Y. (2001). A new triterpenoid from the fern Adiantum lunulatum and evaluation of antibacterial activity. Phytochemistry, 56(2), 173–175. https://doi.org/10.1016/S0031-9422(00)00334-4

    Article  Google Scholar 

  43. Zheng, X. K., Li, Y. J., Zhang, L., Feng, W. S., & Zhang, X. (2011). Antihyperglycemic activity of Selaginella tamariscina (Beauv.) Spring. Journal of Ethnopharmacology, 133(2), 531–537. https://doi.org/10.1016/j.jep.2010.10.028

  44. Bhatia, K., Mal, G., Bhar, R., Jyoti, A., & C., & Seth, A. (2018). Purification and characterization of thermostable superoxide dismutase from Anoxybacillus gonensis KA 55 MTCC 12684. International Journal of Biological Macromolecules, 117, 1133–1139. https://doi.org/10.1016/j.ijbiomac.2018.06.031

    Article  Google Scholar 

  45. Manhas, S., Attri, C., Seth, M.K., & Seth, A. (2018). Determination of phytochemical constituents and evaluation of antimicrobial activity of medicinal fern Christella dentata Indian Fern Journal 35: 169–178. https://www.researchgate.net/publication/343255848

  46. Guo, L., Huang, Q., Li, X. Y., & Yang, S. (2001). Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 3(9), 1661–1665. https://doi.org/10.1039/b009951l

    Article  Google Scholar 

  47. Zhou, Z. H., Wang, J., Liu, X., & Chan, H. S. O. (2001). Synthesis of Fe3O4 nanoparticles from emulsions. Journal of Materials Chemistry, 11(6), 1704–1709. https://doi.org/10.1039/b100758k

    Article  Google Scholar 

  48. Devatha, C. P., Thalla, A. K., & Katte, S. Y. (2016). Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of Cleaner Production, 139, 1425–1435. https://doi.org/10.1016/j.jclepro.2016.09.019

    Article  Google Scholar 

  49. Weng, X., Huang, L., Chen, Z., Megharaj, M., & Naidu, R. (2013). Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Industrial Crops and Products, 51, 342–347. https://doi.org/10.1016/j.indcrop.2013.09.024

    Article  Google Scholar 

  50. Pecora, R. (2000). Dynamic light scattering measurement of nanometer particles in liquids. Journal of Nanoparticle Research, 2(2), 123–131. https://doi.org/10.1023/A:1010067107182

    Article  Google Scholar 

  51. Kulkarni, J. N., Dauthal, P., & Mukhopadhyay, M. (2015). Green synthesis of iron complex nanoparticles using Delonix regia leaf. In 68th Annual Session of Indian Institute of Chemical Engineers (pp. 1–6). Guwahati. https://www.researchgate.net/publication/290426479

  52. Jans, H., Liu, X., Austin, L., Maes, G., & Huo, Q. (2009). Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Analytical Chemistry, 81(22), 9425–9432. https://doi.org/10.1021/ac901822w

    Article  Google Scholar 

  53. Zhang, D. E., Tong, Z. W., Li, S. Z., Zhang, X. B., & Ying, A. (2008). Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion. Materials Letters, 62(24), 4053–4055. https://doi.org/10.1016/j.matlet.2008.05.023

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Honourable Vice-Chancellor, Prof. P. K. Khosla, for the necessary facilities to carry out this research work.

Funding

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Grant No.: SB/YS/LS-19/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Seth.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seth, A., Devi, E., Thakur, K. et al. Himalayan Fern Cheilanthes bicolor Mediated Fabrication and Characterization of Iron Nanoparticles with Antimicrobial Potential. BioNanoSci. 12, 486–495 (2022). https://doi.org/10.1007/s12668-022-00969-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00969-z

Keywords

Navigation