Skip to main content
Log in

Plant-Mediated Synthesis and Applications of Iron Nanoparticles

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Nanoscale iron particles have attracted substantial interest due to their unique physical and chemical properties. Over the years, various physical and chemical methods have been developed to synthesize these nanostructures which are usually expensive and potentially harmful to human health and the environment. Synthesis of iron nanoparticles (INPs) by using plant extract is now of great interest in order to develop a novel and sustainable approach toward green chemistry. In this method the chemical compounds and organic solvents are replaced with phytochemicals and aqueous matrixes, respectively. Similar to any chemical and biochemical reaction, factors such as reaction temperature, concentration of iron precursor, concentration of leaf extract, and reaction time have critical effects on the reaction yield. This review focuses on the novel approaches used for green synthesis of INPs by using plant resources. The currently available statistics including the factors affecting the synthesis process and potential applications of the fabricated nanoparticles are discussed. Recommendations are also given for areas of future research in order to improve the production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ebrahiminezhad, A., Rasoul-Amini, S., Davaran, S., Barar, J., & Ghasemi, Y. (2014). Impacts of iron oxide nanoparticles on the invasion power of Listeria monocytogenes. Current Nanoscience, 10(3), 382–388.

    Article  CAS  Google Scholar 

  2. Ebrahiminezhad, A., Rasoul-Amini, S., Kouhpayeh, A., Davaran, S., Barar, J., & Ghasemi, Y. (2015). Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Current Nanoscience, 11(1), 113–119.

    Article  CAS  Google Scholar 

  3. Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticle Research, 2014, 1–9.

    Article  CAS  Google Scholar 

  4. Parida, U. K., Bindhani, B. K., & Nayak, P. (2011). Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World Journal of Nano Science and Engineering, 1(04), 93.

    Article  CAS  Google Scholar 

  5. Ebrahiminezhad, A., Najafipour, S., Kouhpayeh, A., Berenjian, A., Rasoul-Amini, S., & Ghasemi, Y. (2014). Facile fabrication of uniform hollow silica microspheres using a novel biological template. Colloids and Surfaces B, 118, 249–253.

    Article  CAS  Google Scholar 

  6. Ebrahiminezhad, A., Bagheri, M., Taghizadeh, S., Berenjian, A., & Ghasemi, Y. (2016). Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, 015018.

    Google Scholar 

  7. Ebrahimi, N., Rasoul-Amini, S., Niazi, A., Erfani, N., Moghadam, A., Ebrahiminezhad, A., et al. (2016). Cytotoxic and apoptotic effects of three types of silver-iron oxide binary hybrid nanoparticles. Current Pharmaceutical Biotechnology, 17(12), 1049–1057.

    Article  CAS  Google Scholar 

  8. Reguyal, F., Sarmah, A. K., & Gao, W. (2017). Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. Journal of Hazardous Materials, 321, 868–878.

    Article  CAS  Google Scholar 

  9. Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 1(5), 482–501.

    Article  CAS  Google Scholar 

  10. Guo, J., Wang, R., Tjiu, W. W., Pan, J., & Liu, T. (2012). Synthesis of Fe nanoparticles@ graphene composites for environmental applications. Journal of Hazardous Materials, 225, 63–73.

    Article  CAS  Google Scholar 

  11. Babay, S., Mhiri, T., & Toumi, M. (2015). Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. Journal of Molecular Structure, 1085, 286–293.

    Article  CAS  Google Scholar 

  12. Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42(9), 3349–3355.

    Article  CAS  Google Scholar 

  13. Kim, H. J., Kim, D. G., Yoon, H., Choi, Y. S., Yoon, J., & Lee, J. C. (2015). Polyphenol/feIII complex coated membranes having multifunctional properties prepared by a one-step fast assembly. Advanced Materials Interfaces. https://doi.org/10.1002/admi.201500298.

    Google Scholar 

  14. Yang, L., Cao, Z., Sajja, H. K., Mao, H., Wang, L., Geng, H., et al. (2008). Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. Journal of Biomedical Nanotechnology, 4(4), 439–449.

    Article  CAS  Google Scholar 

  15. Ebrahimi, N., Rasoul-Amini, S., Ebrahiminezhad, A., Ghasemi, Y., Gholami, A., & Seradj, H. (2016). Comparative study on characteristics and cytotoxicity of bifunctional magnetic-silver nanostructures: Synthesized using three different reducing agents. Acta Metallurgica Sinica (English Letters), 29(4), 326–334.

    Article  CAS  Google Scholar 

  16. Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on super paramagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1), 8–23.

    Article  CAS  Google Scholar 

  17. Hilger, I., Hiergeist, R., Hergt, R., Winnefeld, K., Schubert, H., & Kaiser, W. A. (2002). Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study. Investigative Radiology, 37(10), 580–586.

    Article  CAS  Google Scholar 

  18. Pan, Y., Du, X., Zhao, F., & Xu, B. (2012). Magnetic nanoparticles for the manipulation of proteins and cells. Chemical Society Reviews, 41(7), 2912–2942.

    Article  CAS  Google Scholar 

  19. Dobson, J. (2006). Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Therapy, 13(4), 283–287.

    Article  CAS  Google Scholar 

  20. Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 41(7), 2575–2589.

    Article  CAS  Google Scholar 

  21. Busolo, M. A., & Lagaron, J. M. (2012). Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Science and Emerging Technologies, 16, 211–217.

    Article  CAS  Google Scholar 

  22. Ebrahiminezhad, A., Varma, V., Yang, S., Ghasemi, Y., & Berenjian, A. (2015). Synthesis and application of amine functionalized iron oxide nanoparticles on menaquinone-7 fermentation: A step towards process intensification. Nanomaterials, 6(1), 1–9.

    Article  CAS  Google Scholar 

  23. Ebrahiminezhad, A., Varma, V., Yang, S., & Berenjian, A. (2016). Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Applied Microbiology and Biotechnology, 100(1), 173–180.

    Article  CAS  Google Scholar 

  24. Ebrahiminezhad, A., Davaran, S., Rasoul-Amini, S., Barar, J., Moghadam, M., & Ghasemi, Y. (2012). Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Current Nanoscience, 8(6), 868–874.

    Article  CAS  Google Scholar 

  25. Yang, H.-H., Zhang, S.-Q., Chen, X.-L., Zhuang, Z.-X., Xu, J.-G., & Wang, X.-R. (2004). Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Analytical Chemistry, 76(5), 1316–1321.

    Article  CAS  Google Scholar 

  26. Bautista, M., Bomati-Miguel, O., Zhao, X., Morales, M., Gonzalez-Carreno, T., de Alejo, R. P., et al. (2004). Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology, 15(4), S154–S159.

    Article  CAS  Google Scholar 

  27. Poursaberi, T., Hassanisadi, M., & Nourmohammadian, F. (2012). Application of synthesized nanoscale zero-valent iron in the treatment of dye solution containing basic yellow 28. Progress in Color, Colorants and Coatings Journal, 5, 35–40.

    Google Scholar 

  28. Grinbom, G., Duveau, D., Gershinsky, G., Monconduit, L., & Zitoun, D. (2015). Silicon/hollow γ-fe2o3 nanoparticles as efficient anodes for li-ion batteries. Chemistry of Materials, 27(7), 2703–2710.

    Article  CAS  Google Scholar 

  29. Dengxin, L., Guolong, G., Fanling, M., & Chong, J. (2008). Preparation of nano-iron oxide red pigment powders by use of cyanided tailings. Journal of Hazardous Materials, 155(1), 369–377.

    Article  CAS  Google Scholar 

  30. Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., & Pal, T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6(4), 411–414.

    Article  CAS  Google Scholar 

  31. X-q, Li, Elliott, D. W., & Zhang, W.-X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31(4), 111–122.

    Article  CAS  Google Scholar 

  32. Hoeppener, S., Maoz, R., Cohen, S. R., Chi, L., Fuchs, H., & Sagiv, J. (2002). Metal nanoparticles, nanowires, and contact electrodes self-assembled on patterned monolayer templates—A bottom-up chemical approach. Advanced Materials, 14(15), 1036–1041.

    Article  CAS  Google Scholar 

  33. Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of the Total Environment, 573, 1089–1102.

    Article  CAS  Google Scholar 

  34. Kianpour, S., Ebrahiminezhad, A., Mohkam, M., Tamaddon, A. M., Dehshahri, A., Heidari, R., et al. (2016). Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. Journal of Basic Microbiology, 57(2), 132–140.

    Article  CAS  Google Scholar 

  35. Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18(5), 5954–5964.

    Article  Google Scholar 

  36. Makarov, V., Love, A., Sinitsyna, O., Makarova, S., Yaminsky, I., Taliansky, M., et al. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6(1(20)), 35–44.

    CAS  Google Scholar 

  37. Kozma, G., Rónavári, A., Kónya, Z., & Kukovecz, A. (2015). Environmentally benign synthesis methods of zero-valent iron nanoparticles. ACS Sustainable Chemistry & Engineering, 4(1), 291–297.

    Article  CAS  Google Scholar 

  38. Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry, 10(8), 859–862.

    Article  CAS  Google Scholar 

  39. Cruz, D., Falé, P. L., Mourato, A., Vaz, P. D., Luisa Serralheiro, M., & Lino, A. R. L. (2010). Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids and Surfaces B, 81(1), 67–73.

    Article  CAS  Google Scholar 

  40. Vivekanandhan, S., Schreiber, M., Mason, C., Mohanty, A. K., & Misra, M. (2014). Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles. Colloids Surface B, 113(2014), 169–175.

    Article  CAS  Google Scholar 

  41. Y-y, Mo, Y-k, Tang, S-y, Wang, J-m, Ling, H-b, Zhang, & D-y, Luo. (2015). Green synthesis of silver nanoparticles using eucalyptus leaf extract. Materials Letters, 144, 165–167.

    Article  CAS  Google Scholar 

  42. Kahrilas, G. A., Wally, L. M., Fredrick, S. J., Hiskey, M., Prieto, A. L., & Owens, J. E. (2013). Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chemistry & Engineering, 2(3), 367–376.

    Article  CAS  Google Scholar 

  43. Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., et al. (2010). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264–271.

    Article  CAS  Google Scholar 

  44. Sathishkumar, M., Sneha, K., Won, S., Cho, C.-W., Kim, S., & Yun, Y.-S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B, 73(2), 332–338.

    Article  CAS  Google Scholar 

  45. Sathishkumar, M., Sneha, K., & Yun, Y.-S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101(20), 7958–7965.

    Article  CAS  Google Scholar 

  46. Ghaffari-Moghaddam, M., & Hadi-Dabanlou, R. (2014). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. Journal of Industrial and Engineering Chemistry, 20(2), 739–744.

    Article  CAS  Google Scholar 

  47. Ghaffari-Moghaddam, M., Hadi-Dabanlou, R., Khajeh, M., Rakhshanipour, M., & Shameli, K. (2014). Green synthesis of silver nanoparticles using plant extracts. Korean Journal of Chemical Engineering, 31(4), 548–557.

    Article  CAS  Google Scholar 

  48. Rajasekharreddy, P., & Rani, P. U. (2014). Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Materials Science and Engineering: C, 39, 203–212.

    Article  CAS  Google Scholar 

  49. Reddy, N. J., Nagoor Vali, D., Rani, M., & Rani, S. S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering C, 34, 115–122.

    Article  CAS  Google Scholar 

  50. Kumar, A., & Singhal, A. (2009). Synthesis of colloidal silver iron oxide nanoparticles—Study of their optical and magnetic behavior. Nanotechnology, 20(29), 295606.

    Article  CAS  Google Scholar 

  51. Kumar, B., Smita, K., Cumbal, L., & Angulo, Y. (2015). Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: A sustainable approach. Journal of Molecular Liquids, 211, 476–480.

    Article  CAS  Google Scholar 

  52. Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: An ecofriendly approach. Industrial Crops and Products, 58, 238–243.

    Article  CAS  Google Scholar 

  53. Khoei, S., Azarian, M., & Khoee, S. (2012). Effect of hyperthermia and triblock copolymeric nanoparticles as quercetin carrier on DU145 prostate cancer cells. Current Nanoscience, 8(5), 690–696.

    Article  CAS  Google Scholar 

  54. Ebrahiminezhad, A., Barzegar, Y., Ghasemi, Y., & Berenjian, A. (2016). Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials. Chemical Industry and Chemical Engineering Quarterly, 0, 2.

    Google Scholar 

  55. Ebrahiminezhad, A., Berenjian, A., & Ghasemi, Y. (2016). Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters. IET Nanobiotechnology, 2016, 1–4.

    Google Scholar 

  56. Dinali, R., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y., & Berenjian, A. (2017). Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnology Letters. https://doi.org/10.1007/s10529-017-2477-0.

    Google Scholar 

  57. Ebrahiminezhad, A., Taghizadeh, S., Berenjian, A., Heidaryan Naeini, F., & Ghasemi, Y. (2016). Green synthesis of silver nanoparticles capped with natural carbohydrates using Ephedra intermedia. Nanoscience & Nanotechnology-Asia, 6, 1–9.

    Article  CAS  Google Scholar 

  58. Ebrahiminezhad, A., Taghizadeh, S., & Ghasemi, Y. (2017). Green synthesis of silver nanoparticles using Mediterranean Cypress (Cupressus sempervirens) leaf extract. American Journal of Biochemistry and Biotechnology, 13(1), 1–6.

    Article  Google Scholar 

  59. Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., Barar, J., & Davaran, S. (2012). Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bulletin of the Korean Chemical Society, 33(12), 3957–3962.

    Article  CAS  Google Scholar 

  60. Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., Barar, J., & Davaran, S. (2013). Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids and Surfaces B, 1(102), 534–539.

    Article  CAS  Google Scholar 

  61. Gholami, A., Rasoul-Amini, S., Ebrahiminezhad, A., Abootalebi, N., Niroumand, U., Ebrahimi, N., et al. (2016). Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnologica, 28(4), 177–186.

    Google Scholar 

  62. Gholami, A., Rasoul-amini, S., Ebrahiminezhad, A., Seradj, S. H., & Ghasemi, Y. (2015). Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). Journal of Nanomaterials, 16(1), 150.

    Google Scholar 

  63. Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., et al. (2011). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264–271.

    Article  CAS  Google Scholar 

  64. Machado, S., Pacheco, J. G., Nouws, H. P., Albergaria, J. T., & Delerue-Matos, C. (2015). Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Science of the Total Environment, 15(533), 76–81.

    Article  CAS  Google Scholar 

  65. Jassal, V., Shanker, U., & Gahlot, S. (2016). Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Materials Today, 3(6), 1874–1882.

    Article  Google Scholar 

  66. Harshiny, M., Iswarya, C. N., & Matheswaran, M. (2015). Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technology, 286, 744–749.

    Article  CAS  Google Scholar 

  67. Ehrampoush, M. H., Miria, M., Salmani, M. H., & Mahvi, A. H. (2015). Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science and Engineering, 13, 84.

    Article  CAS  Google Scholar 

  68. Latha, N., & Gowri, M. (2014). Bio synthesis and characterisation of Fe3O4 nanoparticles using Caricaya Papaya leaves extract. Synthesis, 3, 1551–1556.

    Google Scholar 

  69. Ebrahiminezhad, A., Zare-Hoseinabadi, A., Berenjian, A., & Ghasemi, Y. (2017). Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Processing and Synthesis, 6(5), 469–475. https://doi.org/10.1515/gps-2016-0133.

    Article  CAS  Google Scholar 

  70. Makarov, V. V., Makarova, S. S., Love, A. J., Sinitsyna, O. V., Dudnik, A. O., Yaminsky, I. V., et al. (2014). Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir, 30(20), 5982–5988.

    Article  CAS  Google Scholar 

  71. Ali, I., Al-Othman, Z. A., & Alwarthan, A. (2016). Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of Ametryn from water. Journal of Molecular Liquids, 221, 1168–1174.

    Article  CAS  Google Scholar 

  72. Prasad, C., Gangadhara, S., & Venkateswarlu, P. (2015). Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Applied Nanoscience, 6(6), 797–802.

    Article  CAS  Google Scholar 

  73. Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the Total Environment, 1(466–467), 210–213.

    Article  CAS  Google Scholar 

  74. Prasad, A. S. (2016). Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Materials Science in Semiconductor Processing, 53, 79–83.

    Article  CAS  Google Scholar 

  75. Markova, Z., Novak, P., Kaslik, J., Plachtova, P., Brazdova, M., Jancula, D., et al. (2014). Iron (II, III)–Polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. ACS Sustainable Chemistry & Engineering, 2(7), 1674–1680.

    Article  CAS  Google Scholar 

  76. Soliemanzadeh, A., Fekri, M., Bakhtiary, S., & Mehrizi, M. H. (2016). Biosynthesis of iron nanoparticles and their application in removing phosphorus from aqueous solutions. Chemical Ecology, 32(3), 286–300.

    Article  CAS  Google Scholar 

  77. Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 15(130), 295–301.

    Article  CAS  Google Scholar 

  78. Wang, C.-B., & Zhang, W.-X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31(7), 2154–2156.

    Article  CAS  Google Scholar 

  79. Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356.

    Article  CAS  Google Scholar 

  80. Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671–8677.

    Article  CAS  Google Scholar 

  81. Pattanayak, M., & Nayak, P. (2013). Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World Journal of Nano Science and Engineering, 2(1), 06–09.

    Google Scholar 

  82. Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, 15(445–446), 1–8.

    Article  CAS  Google Scholar 

  83. Xiao, Z., Yuan, M., Yang, B., Liu, Z., Huang, J., & Sun, D. (2016). Plant-mediated synthesis of highly active iron nanoparticles for Cr(VI) removal: Investigation of the leading biomolecules. Chemosphere, 150, 357–364.

    Article  CAS  Google Scholar 

  84. Machado, S., Grosso, J. P., Nouws, H. P., Albergaria, J. T., & Delerue-Matos, C. (2014). Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Science of the Total Environment, 15(496), 233–240.

    Article  CAS  Google Scholar 

  85. Tartaj, P., del Puerto, Morales M., Veintemillas-Verdaguer, S., González-Carreño, T., & Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36(13), R182.

    Article  CAS  Google Scholar 

  86. Dinali, R., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y., & Berenjian, A. (2017). Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology, 43(4), 493–507.

    Article  CAS  Google Scholar 

  87. Gholami, A., Rasoul-amini, S., Ebrahiminezhad, A., Seradj, S. H., & Ghasemi, Y. (2015). Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). Journal of Nanomaterials, 2015(45), 1–9.

    Article  CAS  Google Scholar 

  88. Kuang, Y., Wang, Q., Chen, Z., Megharaj, M., & Naidu, R. (2013). Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. Journal of Colloid and Interface Science, 15(410), 67–73.

    Article  CAS  Google Scholar 

  89. Zhuang, Z., Huang, L., Wang, F., & Chen, Z. (2015). Effects of cyclodextrin on the morphology and reactivity of iron-based nanoparticles using Eucalyptus leaf extract. Industrial Crops and Products, 69, 308–313.

    Article  CAS  Google Scholar 

  90. Machala, L., Tuček, J., & Zboril, R. (2011). Polymorphous transformations of nanometric iron (III) oxide: A review. Chemistry of Materials, 23(14), 3255–3272.

    Article  CAS  Google Scholar 

  91. Martínez-Cabanas, M., López-García, M., Barriada, J. L., Herrero, R., & de Vicente, M. E. S. (2016). Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chemical Engineering Journal, 301, 83–91.

    Article  CAS  Google Scholar 

  92. Yu, L., Xi, S., Wei, C., Zhang, W., Du, Y., Yan, Q., et al. (2015). Superior lithium storage properties of β-FeOOH. Advanced Energy Materials. https://doi.org/10.1002/aenm.201401517.

    Article  CAS  Google Scholar 

  93. Mohapatra, M., & Anand, S. (2010). Synthesis and applications of nano-structured iron oxides/hydroxides—A review. International Journal of Engineering Science and Technology, 2(8), 127–146.

    Google Scholar 

  94. Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A: Molecular and Biomolecular, 117, 801–804.

    Article  CAS  Google Scholar 

  95. Wang, Z., Fang, C., & Megharaj, M. (2014). Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their Fenton oxidation of azo dye. ACS Sustainable Chemistry & Engineering, 2(4), 1022–1025.

    Article  CAS  Google Scholar 

  96. Wang, Z., Fang, C., & Mallavarapu, M. (2015). Characterization of iron–polyphenol complex nanoparticles synthesized by Sage (Salvia officinalis) leaves. Environmental Technology & Innovation, 4, 92–97.

    Article  Google Scholar 

  97. Wang, Z. (2013). Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chemistry & Engineering, 1(12), 1551–1554.

    Article  CAS  Google Scholar 

  98. Shahwan, T., Abu Sirriah, S., Nairat, M., Boyacı, E., Eroğlu, A. E., Scott, T. B., et al. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172(1), 258–266.

    Article  CAS  Google Scholar 

  99. Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4), 364–369.

    Article  CAS  Google Scholar 

  100. Fazlzadeh, M., Rahmani, K., Zarei, A., Abdoallahzadeh, H., Nasiri, F., & Khosravi, R. (2016). A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Advanced Powder Technology, 28(1), 122–130.

    Article  CAS  Google Scholar 

  101. Niraimathee, V., Subha, V., Ravindran, R. E., & Renganathan, S. (2016). Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15(3), 227–240.

    Article  Google Scholar 

  102. Kumar, B., Smita, K., Cumbal, L., Debut, A., Galeas, S., & Guerrero, V. H. (2016). Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Materials Chemistry and Physics, 179, 310–315.

    Article  CAS  Google Scholar 

  103. Cao, D., Jin, X., Gan, L., Wang, T., & Chen, Z. (2016). Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere, 159, 23–31.

    Article  CAS  Google Scholar 

  104. Muthukumar, H., & Matheswaran, M. (2015). Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustainable Chem Eng., 3(12), 3149–3156.

    Article  CAS  Google Scholar 

  105. Al-Ruqeishi, M. S., Mohiuddin, T., & Al-Saadi, L. K. (2016). Green synthesis of iron oxide nanorods from deciduous Omani mango tree leaves for heavy oil viscosity treatment. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2016.04.003.

    Google Scholar 

  106. Awwad, A. M., & Salem, N. M. (2012). A green and facile approach for synthesis of magnetite nanoparticles. Journal of Nanoscience and Nanotechnology, 2(6), 208–213.

    Article  CAS  Google Scholar 

  107. Ebrahiminezhad, A., Berenjian, A., & Ghasemi, Y. (2016). Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters. IET Nanobiotechnology, 2016, 1–4.

    Google Scholar 

  108. Ebrahiminezhad, A., Taghizadeh, S., Berenjiand, A., Rahi, A., & Ghasemi, Y. (2016). Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using Zataria multiflora. Advanced Materials Letters, 7(6), 122–127.

    Google Scholar 

  109. Benzie, I. F., & Szeto, Y. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agriculture and Food Chemistry, 47(2), 633–636.

    Article  CAS  Google Scholar 

  110. Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agriculture and Food Chemistry, 48(8), 3396–3402.

    Article  CAS  Google Scholar 

  111. Conde, E., Cara, C., Moure, A., Ruiz, E., Castro, E., & Domínguez, H. (2009). Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chemistry, 114(3), 806–812.

    Article  CAS  Google Scholar 

  112. Zhuang, Y., Ahn, S., & Luthy, R. G. (2010). Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: Pathways, kinetics, and reactivity. Environ SciTechnol., 44(21), 8236–8242.

    Article  CAS  Google Scholar 

  113. Rahmani, H., Gholami, M., Mahvi, A., Ali-Mohammadi, M., & Rahmani, K. (2014). Tinidazol antibiotic degradation in aqueous solution by zero valent iron nanoparticles and hydrogen peroxide in the presence of ultrasound radiation. Journal of Water Chemistry and Technology, 36(6), 317–324.

    Article  Google Scholar 

  114. Šimkovič, K., Derco, J., & Valičková, M. (2015). Removal of selected pesticides by nano zero-valent iron. Acta Chimica Slovenica, 8(2), 152–155.

    Google Scholar 

  115. Liu, Y., Li, S., Chen, Z., Megharaj, M., & Naidu, R. (2014). Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere, 108, 426–432.

    Article  CAS  Google Scholar 

  116. Celebi, O., Üzüm, Ç., Shahwan, T., & Erten, H. (2007). A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials, 148(3), 761–767.

    Article  CAS  Google Scholar 

  117. Xiao, S., Ma, H., Shen, M., Wang, S., Huang, Q., & Shi, X. (2011). Excellent copper (II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids and Surfaces A, 381(1), 48–54.

    Article  CAS  Google Scholar 

  118. Singh, R., Misra, V., & Singh, R. P. (2011). Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. Journal of Nanoparticle Research, 13(9), 4063–4073.

    Article  CAS  Google Scholar 

  119. Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Lieberwirth, I., Scott, T. B., & Hallam, K. R. (2008). Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chemical Engineering Journal, 144(2), 213–220.

    Article  CAS  Google Scholar 

  120. Wang, T., Lin, J., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. Journal of Cleaner Production, 83, 413–419.

    Article  CAS  Google Scholar 

  121. Mystrioti, C., Xanthopoulou, T., Tsakiridis, P., Papassiopi, N., & Xenidis, A. (2016). Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction. Science of the Total Environment, 539, 105–113.

    Article  CAS  Google Scholar 

  122. Sulaiman, G. M., Tawfeeq, A. T., & Naji, A. S. (2017). Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artificial Cells, Nanomedicine, and Biotechnology, 21, 1–15.

    Article  CAS  Google Scholar 

  123. Vanitha, V., Hemalatha, S., Pushpabharathi, N., Amudha, P., Jayalakshmi, M. (Eds.) (2017). Fabrication of nanoparticles using Annona squamosa leaf and assessment of its effect on liver (Hep G2) cancer cell line. In IOP conference series: Materials science and engineering. IOP Publishing.

  124. Nagajyothi, P., Pandurangan, M., Kim, D. H., Sreekanth, T., & Shim, J. (2017). Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. Journal of Cluster Science, 28(1), 245–257.

    Article  CAS  Google Scholar 

  125. Naseem, T., & Farrukh, M. A. (2015). Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. Journal of Chemistry, 2015, 1–7.

    Article  CAS  Google Scholar 

  126. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Khan Shinwari, Z., & Maaza, M. (2017). Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chemistry Letters and Reviews, 10(4), 186–201.

    Article  Google Scholar 

  127. Ebrahiminezhad, A., Zare, M., Kiyanpour, S., Berenjian, A., Niknezhad, S. V., & Ghasemi, Y. (2017). Biosynthesis of xanthan gum coated iron nanoparticles by using Xanthomonas campestris. IET Nanobiotechnology. https://doi.org/10.1049/iet-nbt.2017.0199.

    Google Scholar 

  128. Raveendran, P., Fu, J., & Wallen, S. L. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125(46), 13940–13941.

    Article  CAS  Google Scholar 

  129. Vikesland, P. J., Rebodos, R., Bottero, J., Rose, J., & Masion, A. (2016). Aggregation and sedimentation of magnetite nanoparticle clusters. Environmental Science: Nano, 3(3), 567–577.

    CAS  Google Scholar 

  130. Ebrahiminezhad, A., Taghizadeh, S., Ghasemi, Y., & Berenjian, A. (2017). Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.10.076.

    Google Scholar 

  131. Sun, Y. P., Xq, Li, Cao, J., Wx, Zhang, & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1), 47–56.

    Article  CAS  Google Scholar 

  132. Shariati, S., Faraji, M., Yamini, Y., & Rajabi, A. A. (2011). Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination—Journal, 270(1), 160–165.

    Article  CAS  Google Scholar 

  133. Rosická, D., & Šembera, J. (2013). Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients. Nanoscale Research Letters, 8(1), 1–9.

    Article  CAS  Google Scholar 

  134. Park, J., An, K. J., Hwang, Y. S., Park, J. G., Noh, H. J., Kim, J. Y., et al. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 3(12), 891–895.

    Article  CAS  Google Scholar 

  135. Yu, W. W., Chang, E., Sayes, C. M., Drezek, R., & Colvin, V. L. (2006). Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology, 17(17), 4483–4487.

    Article  CAS  Google Scholar 

  136. Sun, Y.-P., Li, X.-Q., Zhang, W.-X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A, 308(1), 60–66.

    Article  CAS  Google Scholar 

  137. Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10(3), 507–517.

    Article  CAS  Google Scholar 

  138. Cai, Y., Shen, Y., Xie, A., Li, S., & Wang, X. (2010). Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 322(19), 2938–2943.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is support by the University of Waikato, New Zealand, and Fasa University of Medical Sciences, Fasa, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Ebrahiminezhad or Aydin Berenjian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A.K. et al. Plant-Mediated Synthesis and Applications of Iron Nanoparticles. Mol Biotechnol 60, 154–168 (2018). https://doi.org/10.1007/s12033-017-0053-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0053-4

Keywords

Navigation