Skip to main content

Advertisement

Log in

Green Biosynthesis of Copper Oxide Nanoparticles Using Waste Colocasia esculenta Leaves Extract and Their Application as Recyclable Catalyst Towards the Synthesis of 1,2,3-triazoles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Generation of value-added materials from waste product is in high demand for sustainable chemistry. In order to reduce the use of toxic chemicals in the synthesis of metal nanoparticles, alternative green methods are in demand. Herein, we report the synthesis of copper oxide nanoparticles from plant extract of Colocasia esculenta leaves which is thrown as waste after cultivation. The synthesized nanoparticle was characterized using UV, FT-IR, EDX, TEM, AAS, DLS, and XPS. The synthesized nanoparticles were used as heterogenous catalyst for carrying out the click reaction of azide and alkyne. The catalyst showed good catalytic activity for the synthesis of various 1,2,3-triazoles with very low catalyst loading (0.535 mol% of copper) giving excellent yield of various triazoles. The catalyst could be easily separated from the reaction medium and recycled several times without losing much catalytic activity. The catalyst showed good TON (177.6) and TOF (29.6 h−1) for the optimized reaction. Thus, the method has several advantages such as synthesis of the nanoparticle from cheap sources (plant extract of waste Colocasia esculenta leaves), use of the water as environmentally benign solvent for carrying out the click reaction, one-pot reaction, low catalyst loading, recyclability of catalyst, and high yield of 1,2,3-triazole products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Rasouli, R., Barhoum, A., & Uludag, H. (2018). A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomaterials Science, 6, 1312–1338. https://doi.org/10.1039/c8bm00021b.

    Article  Google Scholar 

  2. Kaur, A., & Gupta, U. (2009). A review on applications of nanoparticles for the preconcentration of environmental pollutants. Journal of Materials Chemistry, 19, 8279–8289. https://doi.org/10.1039/b901933b.

    Article  Google Scholar 

  3. Gupta, R., & Xie, H. (2018). Nanoparticles in daily life: applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 37, 209–230. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018026009.

    Article  Google Scholar 

  4. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  Google Scholar 

  5. Ramos, A. P., Cruz, M. A. E., Tovani, C. B., & Ciancaglini, P. (2017). Biomedical applications of nanotechnology. Biophysical Reviews, 9, 79–89. https://doi.org/10.1007/s12551-016-0246-2.

    Article  Google Scholar 

  6. Samadishadlou, M., Farshbaf, M., Annabi, N., Kavetskyy, T., Khalilov, R., Saghfi, S., Akbarzadeh, A., & Mousavi, S. (2018). Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1314–1330. https://doi.org/10.1080/21691401.2017.1389746.

    Article  Google Scholar 

  7. Paramasivam, G., Kayambu, N., Rabel, A. M., Sundramoorthy, A. K., & Sundaramurthy, A. (2017). Anisotropic noble metal nanoparticles: synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomaterialia, 49, 45–65. https://doi.org/10.1016/j.actbio.2016.11.066.

    Article  Google Scholar 

  8. Balantrapu, K., & Goia, D. V. (2009). Silver nanoparticles for printable electronics and biological applications. Journal of Materials Research, 24, 2828–2836. https://doi.org/10.1557/jmr.2009.0336.

    Article  Google Scholar 

  9. Hola, K., Markova, Z., Zoppellaro, G., Tucek, J., & Zboril, R. (2015). Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnology Advances, 33, 1162–1176. https://doi.org/10.1016/j.biotechadv.2015.02.003.

    Article  Google Scholar 

  10. Shi, D., Sadat, M. E., Dunn, A. W., & Mast, D. B. (2015). Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale, 7, 8209–8232. https://doi.org/10.1039/c5nr01538c.

    Article  Google Scholar 

  11. Ling, D., Lee, N., & Hyeon, T. (2015). Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Accounts of Chemical Research, 48, 1276–1285. https://doi.org/10.1021/acs.accounts.5b00038.

    Article  Google Scholar 

  12. Lin, A. Y., Young, J. K., Nixon, A. V., & Drezek, R. A. (2014). Encapsulated Fe3O4/Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy. Small, 10, 3246–3251. https://doi.org/10.1002/smll.201303593.

    Article  Google Scholar 

  13. Wang, X., Liu, H., Chen, D., Meng, X., Liu, T., Fu, C., Hao, N., Zhang, Y., Wu, X., Ren, J., & Tang, F. (2013). Multifunctional Fe3O4@P(St/MAA)@Chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy. ACS Applied Materials & Interfaces, 5, 4966–4971. https://doi.org/10.1021/am400721s.

    Article  Google Scholar 

  14. Gupta, A. K., Naregalkar, R. R., Vaidya, V. D., & Gupta, M. (2007). Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine, 2, 23–39. https://doi.org/10.2217/17435889.2.1.23.

    Article  Google Scholar 

  15. Ullah, M. W., Shi, Z., Shi, X., Zeng, D., Li, S., & Yang, G. (2017). Microbes as structural templates in biofabrication: study of surface chemistry and applications. ACS Sustainable Chemistry & Engineering, 5, 11163–11175. https://doi.org/10.1021/acssuschemeng.7b0276.

    Article  Google Scholar 

  16. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44.

    Article  Google Scholar 

  17. Shah, M., Fawcett, D., Sharma, S., Tripathy, S., & Poinern, G. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8, 7278–7308. https://doi.org/10.3390/ma8115377.

    Article  Google Scholar 

  18. Husseiny, M. I., El-Aziz, M. A., Badr, Y., & Mahmoud, M. A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A, 67, 1003–1006. https://doi.org/10.1016/j.saa.2006.09.028.

    Article  Google Scholar 

  19. Guilger-Casagrande, M., & de Lima, R. (2019). Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in Bioengineering and Biotechnology, 7, 287. https://doi.org/10.3389/fbioe.2019.00287.

    Article  Google Scholar 

  20. Ovais, M., Khalil, A. T., Ayaz, M., Ahmad, I., Nethi, S. K., & Mukherjee, S. (2018). Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. International Journal of Molecular Sciences, 19, 4100. https://doi.org/10.3390/ijms19124100.

    Article  Google Scholar 

  21. Das, S. K., Dickinson, C., Lafir, F., Brougham, D. F., & Marsili, E. (2012). Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chemistry, 14, 1334–1322. https://doi.org/10.1039/c2gc16676c.

    Article  Google Scholar 

  22. Deljou, A., & Goudarzi, S. (2016). Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus Sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iranian Journal of Biotechnology, 14, 25–32. https://doi.org/10.15171/ijb.1259.

    Article  Google Scholar 

  23. Choi, Y., & Lee, S. Y. (2020). Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nature Reviews Chemistry, 4, 638–656. https://doi.org/10.1038/s41570-020-00221-w.

    Article  Google Scholar 

  24. Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 9, 12944–12967. https://doi.org/10.1039/C8RA10483B.

    Article  Google Scholar 

  25. Akhtar, M. S., Panwar, J., & Yun, Y.-S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering, 1, 591–602. https://doi.org/10.1021/sc300118u.

    Article  Google Scholar 

  26. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research, 7, 17–28. https://doi.org/10.1016/j.jare.2015.02.007.

    Article  Google Scholar 

  27. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650. https://doi.org/10.1039/c1gc15386b.

    Article  Google Scholar 

  28. Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47, 844–851. https://doi.org/10.1080/21691401.2019.1577878.

    Article  Google Scholar 

  29. Parandhamana, T., Dey, M. D., & Das, S. K. (2019). Biofabrication of supported metal nanoparticles: exploring the bioinspiration strategy to mitigate the environmental challenges. Green Chemistry, 21, 5469–5500. https://doi.org/10.1039/c9gc02291k.

    Article  Google Scholar 

  30. Drishya, S., Namitha, T. R., Johnson, S. P., Vimala, J., & Paulson, M. (2020). Synthesis of silver and copper oxide nanoparticles using Myristica fragrans fruit extract: antimicrobial and catalytic applications. Sustainable Chemistry and Pharmacy, 16, 100255. https://doi.org/10.1016/j.scp.2020.100255.

    Article  Google Scholar 

  31. Rabiee, N., Bagherzadeh, M., Kiani, M., Ghadiri, A. M., Etessamifar, F., Jaberizadeh, A. H., & Shakeri, A. (2020). Biosynthesis of copper oxide nanoparticles with potential biomedical applications. International Journal of Nanomedicine, 15, 3983–3999. https://doi.org/10.2147/IJN.S255398.

    Article  Google Scholar 

  32. Ohemeng, P. O., Dankyi, E., Darko, S., Yaya, A., Salifu, A. A., Ahenkorah, C., & Apalangya, V. A. (2020). Iron and silver nanostructures: biosynthesis, characterization and their catalytic properties. Nano-Structures & Nano-Objects, 22, 100453. https://doi.org/10.1016/j.nanoso.2020.100453.

    Article  Google Scholar 

  33. Xie, H., Lee, J. Y., Wang, D. I. C., & Ting, Y. P. (2007). Silver nanoplates: from biological to biomimetic synthesis. ACS Nano, 1, 429–439. https://doi.org/10.1021/nn7000883.

    Article  Google Scholar 

  34. Jia, L., Zhang, Q., Li, Q., & Song, H. (2009). The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts forp-nitrotoluene hydrogenation. Nanotechnology, 20, 385601–385610. https://doi.org/10.1088/0957-4484/20/38/385601.

    Article  Google Scholar 

  35. Song, J. Y., Kwon, E. Y., & Kim, B. S. (2010). Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess and Biosystems Engineering, 33, 159–164. https://doi.org/10.1007/s00449-009-0373-2.

    Article  Google Scholar 

  36. Mishra, K., Basavegowda, N., & Lee, Y. R. (2015). Biosynthesis of Fe, Pd, and Fe-Pd bimetallic nanoparticles and their application as recyclable catalysts for [3 + 2] cycloaddition reaction: a comparative approach. Catalysis Science & Technology, 5, 2612–2621. https://doi.org/10.1039/c5cy00099h.

    Article  Google Scholar 

  37. Simsikova, M., Bartos, M., Cechal, J., & Sikola, T. (2016). Decolorization of organic dyes by gold nanoflowers prepared on reduced graphene oxide by tea polyphenols. Catalysis Science & Technology, 6, 3008–3017. https://doi.org/10.1039/c5cy01836f.

    Article  Google Scholar 

  38. Vishveshvar, K., Krishnan, M. V. A., Haribabu, K., & Vishnuprasad, S. (2018). Green synthesis of copper oxide nanoparticles using Ixiro coccinea plant leaves and its characterization. BioNanoScience, 8, 554–558. https://doi.org/10.1007/s12668-018-0508-5.

    Article  Google Scholar 

  39. Saravanakumar, K., Shanmugam, S., Varukattu, N. B., Ali, D. M., Kathiresane, K., & Wang, M.-H. (2019). Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. Journal of Photochemistry and Photobiology. B, 190, 103–109. https://doi.org/10.1016/j.jphotobiol.2018.11.017.

    Article  Google Scholar 

  40. Goswami, M., & Das, A. M. (2018). Synthesis of cellulose impregnated copper nanoparticles as an efficient heterogeneous catalyst for C-N coupling reactions under mild conditions. Carbohydrate Polymers, 195, 189–198. https://doi.org/10.1016/j.carbpol.2018.04.033.

    Article  Google Scholar 

  41. Choudhary, A., Sharma, N., Sharma, C., Jamwal, B., & Paul, S. (2019). Synergistic effect of Cr3+ on layered double hydroxide supported Cu0 nanoparticles for the oxidation of alcohols and hydrocarbons. ChemistrySelect, 4, 5276–5283. https://doi.org/10.1002/slct.201803829.

    Article  Google Scholar 

  42. Shen, M., Liu, H., Yu, C., Yin, Z., Muzzio, M., Li, J., Xi, Z., Yu, Y., & Sun, S. (2018). Room-temperature chemoselective reduction of 3-nitrostyrene to 3-vinylaniline by ammonia borane over cu nanoparticles. Journal of the American Chemical Society, 140, 16460–16463. https://doi.org/10.1021/jacs.8b11303.

    Article  Google Scholar 

  43. Pei, Y., Zhao, J., Shi, R., Wang, X., Li, Z., & Ren, J. (2019). Hierarchical porous carbon-supported copper nanoparticles as an efficient catalyst for the dimethyl carbonate synthesis. Catalysis Letters, 149, 3184–3193. https://doi.org/10.1007/s10562-019-02884-7.

    Article  Google Scholar 

  44. Diacon, A., Rusen, E., Mocanu, A., & Nistor, L. C. (2017). Supported Cu0 nanoparticles catalyst for controlled radical polymerization reaction and block-copolymer synthesis. Scientific Reports, 7, 10345–10355. https://doi.org/10.1038/s41598-017-10760-w.

    Article  Google Scholar 

  45. Ojha, N. K., Zyryanov, G. V., Majee, A., Charushin, V. N., Chupakhin, O. N., & Santra, S. (2017). Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis. Coordination Chemistry Reviews, 353, 1–57. https://doi.org/10.1016/j.ccr.2017.10.004.

    Article  Google Scholar 

  46. Gawande, M. B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-Based nanoparticles: synthesis and applications in catalysis. Chemical Reviews, 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482.

    Article  Google Scholar 

  47. Yi, G., Son, J., Yoo, J., Park, C., & Koo, H. (2018). Application of click chemistry in nanoparticle modification and its targeted delivery. Biomaterials Research, 22, 13. https://doi.org/10.1186/s40824-018-0123-0.

    Article  Google Scholar 

  48. Agalave, S. G., Maujan, S. R., & Pore, V. S. (2011). Click chemistry: 1,2,3-triazoles as pharmacophores. Chemistry, an Asian Journal, 6, 2696–2718. https://doi.org/10.1002/asia.201100432.

    Article  Google Scholar 

  49. Nwe, K., & Brechbiel, M. W. (2009). Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biotherapy & Radiopharmaceuticals, 24, 289–302. https://doi.org/10.1089/cbr.2008.0626.

    Article  Google Scholar 

  50. Hou, J., Liu, X., Shen, J., Zhao, G., & Wang, P. G. (2012). The impact of click chemistry in medicinal chemistry. Expert Opinion on Drug Discovery, 7, 489–501. https://doi.org/10.1517/17460441.2012.682725.

    Article  Google Scholar 

  51. Kalesh, K. A., Shi, H., Ge, J., & Yao, S. Q. (2010). The use of click chemistry in the emerging field of catalomics. Organic & Biomolecular Chemistry, 8, 1749–1762. https://doi.org/10.1039/b923331h.

    Article  Google Scholar 

  52. Tron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G., & Genazzani, A. A. (2008). Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Medicinal Research Reviews, 28, 278–308. https://doi.org/10.1002/med.20107.

    Article  Google Scholar 

  53. Mamidyala, S. K., & Finn, M. G. (2010). In situ click chemistry: probing the binding landscapes of biological molecules. Chemical Society Reviews, 39, 1252–1261. https://doi.org/10.1039/b901969n.

    Article  Google Scholar 

  54. Wang, X., Huang, B., Liu, X., & Zhan, P. (2016). Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discovery Today, 21, 118–132. https://doi.org/10.1016/j.drudis.2015.08.004.

    Article  Google Scholar 

  55. Meghani, N. M., Amin, H. H., & Lee, B. J. (2017). Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discovery Today, 22, 1604–1619. https://doi.org/10.1016/j.drudis.2017.07.007.

    Article  Google Scholar 

  56. Chuprakov, S., Kwok, S. W., & Fokin, V. V. (2013). Transannulation of 1-sulfonyl-1,2,3-triazoles with heterocumulenes. Journal of the American Chemical Society, 135, 4652–4655. https://doi.org/10.1021/ja400350c.

    Article  Google Scholar 

  57. Zibinsky, M., & Fokin, V. V. (2013). Sulfonyl-1,2,3-triazoles: convenient synthones for heterocyclic compounds. Angewandte Chemie, International Edition, 52, 1507–1510. https://doi.org/10.1002/anie.201206388.

    Article  Google Scholar 

  58. Thirumurugan, P., Matosiuk, D., & Jozwiak, K. (2013). Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews, 113, 4905–4979. https://doi.org/10.1021/cr200409f.

    Article  Google Scholar 

  59. Haas, K. L., & Franz, K. J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chemical Reviews, 109, 4921–4960. https://doi.org/10.1021/cr900134a.

    Article  Google Scholar 

  60. Jewett, J. C., & Bertozzi, C. R. (2010). Cu-free click cycloaddition reactions in chemical biology. Chemical Society Reviews, 39, 1272–1279. https://doi.org/10.1039/b901970g.

    Article  Google Scholar 

  61. Huo, J., Hu, H., Zhang, M., Hu, X., Chen, M., Chen, D., Liu, J., Xiao, G., Wang, Y., & Wen, Z. (2017). A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Advances, 7, 2281–2287. https://doi.org/10.1039/c6ra27012c.

    Article  Google Scholar 

  62. Qin, A., Lam, J. W. Y., & Tang, B. Z. (2010). Click polymerization. Chemical Society Reviews, 39, 2522–2544. https://doi.org/10.1039/b909064a.

    Article  Google Scholar 

  63. Kantheti, S., Narayana, R., & Raju, K. V. S. N. (2015). The impact of 1,2,3-triazoles in the design of functional coatings. RSC Advances, 5, 3687–3708. https://doi.org/10.1039/c4ra12739k.

    Article  Google Scholar 

  64. Debets, M. F., van Berkel, S. S., Dommerholt, J., Dirks, A. J., Rutjes, F. P. J. T., & van Delft, F. L. (2011). Bioconjugation with strained alkenes and alkynes. Accounts of Chemical Research, 44, 805–815. https://doi.org/10.1021/ar200059z.

    Article  Google Scholar 

  65. Binder, W. H., & Kluger, C. (2006). Azide/alkyne-“click” reactions: applications in material science and organic synthesis. Current Organic Chemistry, 10, 1791–1815. https://doi.org/10.2174/138527206778249838.

    Article  Google Scholar 

  66. Hu, M. H., Chen, X., Chen, S. B., Ou, T. M., Yao, M., Gu, L. Q., Huang, Z. S., & Tan, J. H. (2015). A new application of click chemistry in situ: development of fluorescent probe for specific G-quadruplex topology. Scientific Reports, 5, 17202. https://doi.org/10.1038/srep17202.

    Article  Google Scholar 

  67. Golas, P. L., & Matyjaszewski, K. (2010). Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chemical Society Reviews, 39, 1338–1354. https://doi.org/10.1039/b901978m.

    Article  Google Scholar 

  68. Huisgen, R. (1984). In A. Padwa (Ed.), 1,3-Dipolar cycloaddition chemistry (pp. 1–176). New York: Wiley.

    Google Scholar 

  69. Wang, W., Wei, F., Ma, Y., Tung, C., & Xu, Z. (2016). Copper(I)-catalyzed three-component click/alkynylation: one-pot synthesis of 5-Alkynyl-1,2,3-triazoles. Organic Letters, 18, 4158–4416. https://doi.org/10.1021/acs.orglett.6b02199.

    Article  Google Scholar 

  70. Chouaib, K., Romdhane, A., Delemasure, S., Dutartre, P., Elie, N., Touboul, D., & Jannet, H. B. (2016). Regiospecific synthesis by copper- and ruthenium-catalyzed azide-alkyne 1,3-dipolar cycloaddition, anticancer and anti-inflammatory activities of oleanolic acid triazole derivatives. Arabian Journal of Chemistry, 12, 3732–3742.

    Article  Google Scholar 

  71. Chetia, M., Gehlot, P. S., Kumar, A., & Sarma, D. (2018). A recyclable/reusable hydrotalcite supported copper nano catalyst for 1,4-disubstituted-1,2,3-triazole synthesis via click chemistry approach. Tetrahedron Letters, 59, 397–401. https://doi.org/10.1016/j.tetlet.2017.12.051.

    Article  Google Scholar 

  72. Chetia, M., Ali, A. A., Bhuyan, D., Saikia, L., & Sarma, D. (2015). Magnetically recoverable chitosan-stabilised copper-iron oxide nanocomposite material as an efficient heterogeneous catalyst for azide-alkyne cycloaddition reactions. New Journal of Chemistry, 39, 5902–5907. https://doi.org/10.1039/c5nj00754b.

    Article  Google Scholar 

  73. Nasrollahzadeh, M., & Sajadi, S. M. (2015). Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3 + 2] cycloaddition of azides and alkynes at room temperature. Journal of Colloid and Interface Science, 457, 141–147. https://doi.org/10.1016/j.jcis.2015.07.004.

    Article  Google Scholar 

  74. Nasrollahzadeh, M., Ghorbannezhad, F., Issaabadi, Z., & Sajadi, S. M. (2019). Recent developments in the biosynthesis of cu-based recyclable nanocatalysts using plant extracts and their application in the chemical reactions. Chemical Record, 19, 601–643. https://doi.org/10.1002/tcr.201800069.

    Article  Google Scholar 

  75. Kalita, P., Pegu, C. D., Dutta, P., & Baruah, P. K. (2014). Room temperature solvent free aza-Michael reactions over nano-cage mesoporous materials. Journal of Molecular Catalysis A: Chemical, 394, 145–150. https://doi.org/10.1016/j.molcata.2014.06.031.

    Article  Google Scholar 

  76. Baruah, P. K., Dutta, P., & Kalita, P. (2015). Cage like al-kit-5 mesoporous materials for C-C bond formation reactions under solvent free conditions. Catalysis Letters, 145, 2037–2045. https://doi.org/10.1007/s10562-015-1611-7.

    Article  Google Scholar 

  77. Dutta, P., Kalita, P., & Baruah, P. K. (2016). Room temperature ring opening of epoxides over triflic acid functionalized cage like mesoporous materials. ChemistrySelect, 1, 1650–1657. https://doi.org/10.1002/slct.201600500.

    Article  Google Scholar 

  78. Kalita, P., Dutta, P., & Baruah, P. K. (2018). Conversion of fructose and xylose into platform chemicals using organo-functionalized mesoporous material. ChemistrySelect, 3, 10971–10976. https://doi.org/10.1002/slct.201801315.

    Article  Google Scholar 

  79. Singh, M. S., & Chowdhury, S. (2012). Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Advances, 2, 4547–4592. https://doi.org/10.1039/c2ra01056a.

    Article  Google Scholar 

  80. Paprocki, D., Madej, A., Koszelewski, D., Brodzka, A., & Ostaszewski, R. (2018). Multicomponent reactions accelerated by aqueous micelles. Frontiers in Chemistry, 6, 502. https://doi.org/10.3389/fchem.2018.00502.

    Article  Google Scholar 

  81. Haji, M. (2016). Multicomponent reactions: a simple and efficient route to heterocyclic phosphonates. Beilstein Journal of Organic Chemistry, 12, 1269–1301. https://doi.org/10.3762/bjoc.12.121.

    Article  Google Scholar 

  82. Estevez, V., Villacampa, M., & Menendez, J. C. (2014). Recent advances in the synthesis of pyrroles by multicomponent reactions. Chemical Society Reviews, 43, 4633–4657. https://doi.org/10.1039/c3cs60015g.

    Article  Google Scholar 

  83. Graebin, C. S., Ribeiro, F. V., Rogerio, K. R., & Kummerle, A. E. (2019). Multicomponent reactions for the synthesis of bioactive compounds: a review. Current Organic Synthesis, 16, 855–859. https://doi.org/10.2174/1570179416666190718153703.

    Article  Google Scholar 

  84. Neochoritis, C. G., Zhao, T., & Domling, A. (2019). Tetrazoles via multicomponent reactions. Chemical Reviews, 119, 1970–2042. https://doi.org/10.1021/acs.chemrev.8b00564.

    Article  Google Scholar 

  85. Manjari, G., Saran, S., Arun, T., Rao, A. V. B., & Devipriya, S. P. (2017). Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. Journal of Saudi Chemical Society, 21, 610–618. https://doi.org/10.1016/j.jscs.2017.02.004.

    Article  Google Scholar 

  86. Jadhav, M. S., Kulkarni, S., Raikar, P., Barretto, D. A., Vootla, S. K., & Raikar, U. S. (2018). Green biosynthesis of CuO Ag-CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New Journal of Chemistry, 42, 204–213. https://doi.org/10.1039/c7nj02977b.

    Article  Google Scholar 

  87. Cerník, M., & Padil, V. V. T. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine, 8, 889–898. https://doi.org/10.2147/ijn.s40599.

    Article  Google Scholar 

  88. Raul, P. K., Senapati, S., Sahoo, A. K., Umlong, I. M., Devi, R. R., Thakur, A. J., & Veer, V. (2014). CuO nanorods: a potential and efficient adsorbent in water purification. RSC Advances, 4, 40580–40587. https://doi.org/10.1039/c4ra04619f.

    Article  Google Scholar 

  89. Sundar, S., Venkatachalam, G., & Kwon, S. J. (2018). Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials, 8, 823–839. https://doi.org/10.3390/nano8100823.

    Article  Google Scholar 

  90. Karle, S., Rogalla, D., Ludwig, A., Becker, H.-W., Dirk, A., Grafen, W. M., Ostendorfd, A., & Devi, A. (2017). Synthesis and evaluation of new copper ketoiminate precursors for a facile and additive-free solution-based approach to nanoscale copper oxide thin films. Dalton Transactions, 46, 2670–2679. https://doi.org/10.1039/c6dt04399b.

    Article  Google Scholar 

  91. Mo, L., & Kawi, S. (2014). An in situ self-assembled core-shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts. Journal of Materials Chemistry A, 2, 7837–7844. https://doi.org/10.1039/c3ta14592a.

    Article  Google Scholar 

  92. McNulty, J., & Keskar, K. (2012). Discovery of a robust and efficient homogeneous Silver(I) catalyst for the cycloaddition of azides onto terminal alkynes. European Journal of Organic Chemistry, 2012, 5462–5470. https://doi.org/10.1002/ejoc.201200930.

    Article  Google Scholar 

  93. Bagdi, P. R., Basha, R. S., Baruah, P. K., & Khan, A. T. (2014). Copper oxide nanoparticle mediated ‘click chemistry’ for the synthesis of mono-, bis- and tris-triazole derivatives from 10,10-dipropargyl-9-anthrone as a key building block. RSC Advances, 4, 10652–10659. https://doi.org/10.1039/C3RA44869J.

    Article  Google Scholar 

  94. Maleki, A., Panahzadeh, M., & Eivazzadeh-keihan, R. (2019). Agar: a natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1,2,3-triazoles. Green Chemistry Letters and Reviews, 12, 395–406. https://doi.org/10.1080/17518253.2019.1679263.

    Article  Google Scholar 

  95. Iniyavan, P., Balaji, G. L., Sarveswari, S., & Vijayakumar, V. (2015). CuO nanoparticles: synthesis and application as an efficient reusable catalyst for the preparation of xanthene substituted 1,2,3-triazoles via click chemistry. Tetrahedron Letters, 56, 5002–5009. https://doi.org/10.1016/j.tetlet.2015.07.016.

    Article  Google Scholar 

  96. Alonso, F., Moglie, Y., & Radivoy, G. (2015). Copper nanoparticles in click chemistry. Accounts of Chemical Research, 48, 2516–2528. https://doi.org/10.1021/acs.accounts.5b00293.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Dept. of Chemistry, Gauhati University, India, and Sophisticated Analytical Instrument Facility (SAIF), NEHU, Shillong, India, for TEM and EDX analysis of the samples.

Funding

This study is financially supported by DST, Govt. of India (Grant No. SB/FT/CS-100/2012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devasish Chowdhury or Pranjal K. Baruah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

Not applicable

Consent for Publication

All authors have approval for final version of the article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

The characterization data including 1H & 13C NMR and IR spectra of the synthesized 1,2,3-triazoles are provided. XPS spectra of the catalyst is provided. The IR and EDX data of the fresh catalyst and after each reaction cycle is also provided. (PDF 2307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, K., Dutta, P., Chowdhury, D. et al. Green Biosynthesis of Copper Oxide Nanoparticles Using Waste Colocasia esculenta Leaves Extract and Their Application as Recyclable Catalyst Towards the Synthesis of 1,2,3-triazoles. BioNanoSci. 11, 189–199 (2021). https://doi.org/10.1007/s12668-021-00826-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00826-5

Keywords

Navigation