Skip to main content
Log in

Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

A valuable approach in green nanotechnology is the application of biomaterials in the synthesis of nanoparticles. In this project, we synthesized iron oxide nanoparticles in the phase of hematite (α-Fe2O3) by the aqueous extract of Laurus nobilis L. leaves in a simple and eco-friendly method. The nanoparticles were characterized using Ultraviolet–Visible spectroscopy (UV–Visible), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transfer electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The results showed that the nanoparticles are crystalline, almost spherical like and partly as a hexagonal shape with an average size of 8.03 ± 8.99 nm. The antimicrobial activity of the synthesized nanoparticles was evaluated against three bacteria and two fungi. The results showed that the nanoparticles are moderately effective on the Gram-positive bacterium of Listeria monocytogenes and the fungi Aspergillus flavus and Penicillium spinulosum. The nanoparticles synthesized by this green method could be potentially useful as antifungal and antibacterial compound and, may be considered as gas sensors, light photo-catalysis and, semiconductor.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Michna, A., Morga, M., Adamczyk, Z., Kubiak, K.: Monolayers of silver nanoparticles obtained by green synthesis on macroion modified substrates. Mater. Chem. Phys. 227, 224–235 (2019)

    CAS  Google Scholar 

  2. Fang, X., Wang, Y., Wang, Z., Jiang, Z., Dong, M.: Microorganism assisted synthesized nanoparticles for catalytic applications, review. Energies 12, 190 (2019)

    CAS  Google Scholar 

  3. Kumar, V.G.V., Prem, A.A.: Green synthesis and characterization of iron oxide nanoparticles using Phyllanthus niruri extract. Orient. J. Chem. 34, 2583–2589 (2018)

    Google Scholar 

  4. Iravani, S.: Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011)

    CAS  Google Scholar 

  5. Deraz, N.M., Abd-Elkader, O.H.: Investigation of magnesium ferrite spinel solid solution with iron-rich composition. Int. J. Electrochem. Sci. 8, 9071–9081 (2013)

    CAS  Google Scholar 

  6. Zolghadr, S., Khojier, K., Kimiagar, S.: Ammonia sensing properties of α-Fe2O3 thin films during post annealing process. Procedia Mater. Sci. 11, 469–473 (2015)

    CAS  Google Scholar 

  7. Campos, E.A., Pinto, D.V.B.S., Oliveira, J.I.S., Mattos, E.C., Dutra, R.C.L.: Synthesis, characterization and applications of iron oxide nanoparticles—a short review. J. Aerosp. Technol. Manag. 7, 267–276 (2015)

    CAS  Google Scholar 

  8. Prasad, C., Tang, H., Liu, W.: Magnetic Fe3O4 based layered double hydroxides (LDHs) nanocomposites (Fe3O4/LDHs): recent review of progress in synthesis, properties and applications. J. Nanostructure Chem. 8, 393–412 (2018)

    CAS  Google Scholar 

  9. Samrot, A.V., Rashmitha, S., Veera, P., Sahithya, C.S.: Azadirachta indica influenced biosynthesis of super-paramagnetic iron-oxide nanoparticles and their applications in tannery water treatment and X-ray imaging. J. Nanostructure Chem. 8, 343–351 (2018)

    CAS  Google Scholar 

  10. Liu, Y., Yu, L., Hu, Y., Guo, C., Zhang, F., Lou, X.W.: A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4, 183–187 (2012)

    CAS  PubMed  Google Scholar 

  11. Lohrasbi, S., Jadidi Kouhbanani, M.A., Beheshtkhoo, N., Ghasemi, Y., Amani, A.M., Taghizadeh, S.: Green synthesis of iron nanoparticles using Plantago major leaf extract and their application as a catalyst for the decolonization of azo dye. BioNanoScienc 9, 317–322 (2019)

    Google Scholar 

  12. Desalegn, B., Megharaj, M., Zuliang Chen, Z., Naidu, R.: Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon 5, 1–9 (2019)

    Google Scholar 

  13. Rostamizadeh, E., Iranbakhsh, A., Majd, A., Arbabian, S., Mehragan, I.: Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in barley. J. Nanostruct. Chem. 2, 422–427 (2020)

    Google Scholar 

  14. Markova, Z., Novak, P., Kaslik, J., Plachtova, P., Brazdova, M., Jancula, D., Siskova, K.M., Machala, L., Marsalek, B., Zboril, R.: Iron (II, III)-Polyphenol complex nanoparticles derived from green tea with remarkable eco toxicological impact. ACS Sustain. Chem. Engin. 2, 1674–1680 (2014)

    CAS  Google Scholar 

  15. Nadagouda, M.N., Castle, A.B., Murdock, R.C., Hussain, S.M., Varma, R.S.: In vitro biocompatibility of nanoscale zero-valent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 12, 114–122 (2010)

    CAS  Google Scholar 

  16. Ahmmad, B., Leonard, K., Shariful Islam, M., Kurawaki, J., Muruganandham, M., Ohkubo, T., Kuroda, Y.: Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol. 24, 160–167 (2013)

    CAS  Google Scholar 

  17. Prasad, A.S.: Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Mat. Sci. Semicon. Proc. 53, 79–83 (2016)

    CAS  Google Scholar 

  18. Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E., Maensiri, S.: Aloe Vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl. Phys. A. 111, 1187–1193 (2012)

    Google Scholar 

  19. Wang, Z., Fang, C., Megharaj, M.: Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem. Eng. 2, 1022–1025 (2014)

    CAS  Google Scholar 

  20. Rao, A., Bankar, A., Kumar, A.R., Gosavi, S., Zinjarde, S.: Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J. Contam. Hydrol. 146, 63–73 (2013)

    CAS  PubMed  Google Scholar 

  21. Venkateswarlu, S., Rao, Y.S., Balaji, T., Prathima, B., Jyothi, N.V.: Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mat. Lett. 100, 241–244 (2013)

    CAS  Google Scholar 

  22. Senthil, M., Ramesh, C.: Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig. J. Nanomater. Bios. 7, 1655–1660 (2012)

    Google Scholar 

  23. Ouchikh, O., Chahed, T., Ksouri, R., Taarit, M.B., Faleh, H., Abdelly, C., Kchouk, M.E., Marzouk, B.: The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. J. Food Compos. Anal. 24, 103–110 (2011)

    CAS  Google Scholar 

  24. Fidan, H., Stefanova, G., Kostova, I., Stankov, S., Damyanova, S., Stoyanova, A., Zheljazkov, V.D.: Chemical composition and antimicrobial activity of Laurus nobilis L. essential oils from Bulgaria. Molecules 24, 804 (2019)

    PubMed Central  Google Scholar 

  25. Conforti, F., Statti, G., Uzunov, D., Menichinia, F.: Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biol. Pharm. Bull. 29, 2056–2064 (2006)

    CAS  PubMed  Google Scholar 

  26. Fernandez-Andrade, C., Da Rosa, M., Boufleuer, E., Ferreira, F., Iwanaga, C., Gonçalves, J., Cortez, D., Martins, C., Linde, G., Simões, M.: Chemical composition and antifungal activity of essential oil and fractions extracted from the leaves of Laurus nobilis L. cultivated in southern Brazil. J. Med. Plants Res. 48, 865–871 (2016)

    Google Scholar 

  27. Speroni, E., Cervellati, R., Dall'Acqua, S., Guerra, M.C., Greco, E., Govoni, P., Innocenti, G.: Gastro protective effect and antioxidant properties of different Laurus nobilis L. leaf extracts. J. Med. Food 14, 499–504 (2011)

    PubMed  Google Scholar 

  28. Caputo, L., Nazzaro, F., Souza, L.F., Aliberti, L., De Martino, L., Fratianni, F., Coppola, R., De Feo, V.: Laurus nobilis: composition of essential oil and its biological activities. Molecules 22, 930–941 (2017)

    PubMed Central  Google Scholar 

  29. Kamari M., Jamzad, M., Naderi, F.: Green synthesis of iron oxide nanoparticles by Laurus nobilis L. aqueous extract. Poster session presented at: The 25th Iranian Seminar of Organic Chemistry, Tehran, 2–4 Sept 2017.

  30. Bauer, A.W., Kirby, W.M.M., Sherris, J.C., Truch, M.: Antibiotic susceptibility testing by standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1996)

    Google Scholar 

  31. Klacanova, K., Fodran, P., Simon, P., Rapta, P., Boca, R., Jorik, V., Miglierini, M., Kolek, E., Kaplovik, L.: Formation of Fe (0)-Nanoparticles via reduction of Fe (II) compounds by amino acids and their subsequent oxidation to Iron Oxides. J. Chem. 2013, 1–10 (2013)

    Google Scholar 

  32. Kanagasubbulakshmi, S., Kadirvelu, K.: Green synthesis of Iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J. 2, 422–427 (2017)

    Google Scholar 

  33. Rajendran, K., Karunagaran, V., Mahanty, B., Sen, S.: Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells. Int. J. Biol. Macromol. 74, 376–381 (2015)

    CAS  PubMed  Google Scholar 

  34. Ilmetov, R.: Photocatalytic activity of hematite nanoparticles prepared by sol-gel method. Mater. Today: Proc. 6, 11–14 (2019)

    CAS  Google Scholar 

  35. Joshi, D.P., Pant, G., Arora, N., Nainwal, S.: Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticles. Heliyon 3, 1–16 (2017)

    Google Scholar 

  36. Abusalem, M., Awwad, A., Ayad, J., Abu Rayyan, A.: Green synthesis of α-Fe2O3 nanoparticles using pistachio leaf extract influenced seed germination and seedling growth of tomatoes. JJEES 10, 161–166 (2019)

    Google Scholar 

  37. Peng, D., Beysen, S., Li, Q., Yang, L.: Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets. Particuology 8, 386–389 (2010)

    CAS  Google Scholar 

  38. Ocwieja, M., Adamczyk, Z., Morga, M., Bielanska, E., Wegrzynowicz, A.: Hematite nanoparticle monolayers on mica preparation by controlled self-assembly. J. Colloid Interf. Sci. 386, 51–59 (2012)

    CAS  Google Scholar 

  39. Asoufi, H.M., Al-Antary, T.M., Awwad, A.M.: Green route for synthesis hematite (α-Fe2O3) nanoparticles: Toxicity effect on the green peach aphid, Myzus persicae (Sulzer). Environ. Nanotechnol. Monit. Manag. 9, 107–111 (2018)

    Google Scholar 

  40. Xu, C., Cheng, D., Gao, B., Yin, Z., Yue, Q.: Zhao X (2012) Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions. Front. Environ. Sci. Eng. 6, 455–462 (2012)

    CAS  Google Scholar 

  41. Singh, B.P., Sharma, N., Kumar, R., Kumar, A.: Simple hydrolysis synthesis of uniform rice-shaped β-FeOOH nanocrystals and their transformation to α-Fe2O3 microspheres. Indian J. Mater. Sci. 2015, 1–7 (2015)

    CAS  Google Scholar 

  42. Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R.K., Kruszka, D., Kachlicki, P., Franklin, G.: Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11, 940 (2018)

    PubMed Central  Google Scholar 

  43. Turakhia, B., Chikkala, S., Shah, S.: Novelty of bioengineered iron nanoparticles in nano coated surgical cotton: a green chemistry. Adv. Pharmacol. Sci. 2019, 1–10 (2019)

    Google Scholar 

  44. Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S., Webster, T.J.: Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomed. 5, 277–283 (2010)

    CAS  Google Scholar 

  45. Subbulakshmi, K., Kadirvelu, K.: Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def.Life Sci. J. 2, 422–427 (2017)

    Google Scholar 

  46. Mohamad Rafi, M., Zameer Ahmed, K.S., Prem Nazar, K., Siva Kumar, D., Thamilselvan, M.: Synthesis, characterization and magnetic properties of hematite (α-Fe2O3) nanoparticles on polysaccharide templates and their antibacterial activity. Appl. Nanosci. 5, 515–520 (2015)

    Google Scholar 

  47. Rufus, A., Sreeju, N., Philip, D.: Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 6, 94206–94217 (2016)

    CAS  Google Scholar 

  48. Hassan, D., Talha Khalil, A., Saleem, J., Diallo, A., Khamlich, S., Shinwari, Z.K., Malik Maaza, M.: Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): their physical properties and novel biological applications. Artif. Cell Nanomed. B. 46, 693–707 (2018)

    CAS  Google Scholar 

  49. Taylor, E.N., Webster, T.J.: The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int. J. Nanomed. 4, 145–152 (2009)

    CAS  Google Scholar 

  50. Parveena, S., Wania, A.H., Shahb, M.A., Devib, H.S., Bhata, M.Y., Koka, J.A.: Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 115, 287–292 (2018)

    Google Scholar 

  51. Bharde, A.A., Parikh, R.Y., Baidakova, M., Jouen, S., Hannoyer, B., Enoki, T., Prasad, B., Shouche, Y.S., Ogale, S., Sastry, M.: Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24, 5787–5794 (2008)

    CAS  PubMed  Google Scholar 

  52. Salgado, P., Márquez, K., Rubilar, O., Contreras, D., Vidal, G.: The effect of phenolic compounds on the green synthesis of iron nanoparticles (FexOy-NPs) with photocatalytic activity. Appl. Nanosci. 9, 371–385 (2019)

    CAS  Google Scholar 

  53. Luo, F., Chen, Z., Megharaj, M., Naidu, R.: Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Adv. 4, 53467–53474 (2014)

    CAS  Google Scholar 

  54. Khalil, M.M.H., Mahmoud, I.I., Hamed, M.O.A.: Green synthesis of gold nanoparticles using Laurus nobilis L. leaf extract and its antimicrobial activity. IJGHC 4, 265–279 (2015)

    CAS  Google Scholar 

  55. Kashkouli, S., Jamzad, M., Nouri, A.: Total phenolic and flavonoids contents, radical scavenging activity and green synthesis of silver nanoparticles by Laurus nobilis L. leaves aqueous extract. JMPB 1, 25–32 (2018)

    Google Scholar 

  56. Al-Ghamdi, A.Y.: Antimicrobial and catalytic activities of green synthesized silver nanoparticles using bay laurel (Laurus nobilis) leaves extract. J. Biomater. Nanobiotech. 10, 26–39 (2019)

    CAS  Google Scholar 

  57. Muniz-Marquez, D.B., Rodriguez, R., Balagurusamy, N., Carrillo, M.L., Belmares, R., Contreras, J.C., Nevarez, G.V., Aguilar, C.N.: Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L. CYTA J. Food 12, 271–276 (2014)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Jamzad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamzad, M., Kamari Bidkorpeh, M. Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J Nanostruct Chem 10, 193–201 (2020). https://doi.org/10.1007/s40097-020-00341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00341-1

Keywords

Navigation