Skip to main content

Advertisement

Log in

Diversity of Bacterial Synthesis of Silver Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

There are growing demands for the synthesis of silver nanoparticles (AgNPs) using green technology approaches due to their cost-effective and eco-friendly nature. Although, there are considerable number of research reports available related to biological means such as using plants, fungi, and bacteria-assisted synthesis of silver nanoparticles. In recent trends, synthesis of AgNPs using bacteria is considered most attractive, simple, green, and cost-effective source(s). This leads to the increase in the number of reports on AgNPs synthesized by different bacterial genera (both gram-positive and gram-negative) and species. The present review article describes the diversity of bacteria (both gram-positive and gram-negative) capable of synthesizing AgNPs and possible applications of AgNPs. Thus, increasing the number of bacteria for the synthesis of AgNPs will be helpful to combat pathogenic bacteria and will open doors for novel avenues and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kang, Y. O., Jung, J. Y., Cho, D., Kwon, O. H., Cheon, J. Y., & Park, W. H. (2016). Antimicrobial silver chloride nanoparticles stabilized with chitosan oligomer for the healing of burns. Materials (Basel), 9(4), 215. https://doi.org/10.3390/ma9040215.

    Article  Google Scholar 

  2. Singh, R., Shedbalkar, U. U., Wadhwani, S. A., & Chopade, B. A. (2015). Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied Microbiology and Biotechnology, 99(11), 4579–4593. https://doi.org/10.1007/s00253-015-6622-1.

    Article  Google Scholar 

  3. Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research Pharmaceutical Sciences, 9(6), 385–406.

    Google Scholar 

  4. Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2017). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399–408. https://doi.org/10.1007/s13204-015-0449-z.

    Article  Google Scholar 

  5. Shankar, T., Karthiga, P., Swarnalatha, K., & Rajkumar, K. (2017). Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resource-Efficient Technologies, 3(3), 303–308. https://doi.org/10.1016/j.reffit.2017.01.004.

    Article  Google Scholar 

  6. Prathna, T. C., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1), 212–216. https://doi.org/10.1016/j.colsurfa.2010.12.047.

    Article  Google Scholar 

  7. Zhao, X., Xia, Y., Li, Q., Ma, X., Quan, F., Geng, C., & Han, Z. (2014). Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 180–188. https://doi.org/10.1016/j.colsurfa.2013.12.008.

    Article  Google Scholar 

  8. Pingali, K. C., Rockstraw, D. A., & Deng, S. (2005). Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Science and Technology, 39(10), 1010–1014. https://doi.org/10.1080/02786820500380255.

    Article  Google Scholar 

  9. Shi, X., Wang, S., Duan, X., & Zhang, Q. (2008). Synthesis of nano Ag powder by template and spray pyrolysis technology. Materials Chemistry and Physics, 112(3), 1110–1113. https://doi.org/10.1016/j.matchemphys.2008.07.043.

    Article  Google Scholar 

  10. Oluwafemi, O. S., Mochochoko, T., Leo, A. J., Mohan, S., Jumbam, D. N., & Songca, S. P. (2016). Microwave irradiation synthesis of silver nanoparticles using cellulose from Eichhornia crassipes plant shoot. Materials Letters, 185, 576–579. https://doi.org/10.1016/j.matlet.2016.08.116.

    Article  Google Scholar 

  11. Borase, H. P., Salunke, B. K., Salunkhe, R. B., Patil, C. D., Hallsworth, J. E., Kim, B. S., & Patil, S. V. (2014). Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Applied Biochemistry and Biotechnology, 173(1), 1–29. https://doi.org/10.1007/s12010-014-0831-4.

    Article  Google Scholar 

  12. Tang, B., Wang, J., Xu, S., Afrin, T., Xu, W., Sun, L., & Wang, X. (2011). Application of anisotropic silver nanoparticles: Multifunctionalization of wool fabric. Journal of Colloid and Interface Science, 356(2), 513–518. https://doi.org/10.1016/j.jcis.2011.01.054.

    Article  Google Scholar 

  13. Li, X., Xu, H., Chen, Z.-S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, 270974. https://doi.org/10.1155/2011/270974.

    Google Scholar 

  14. Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. V. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 90, 78–84. https://doi.org/10.1016/j.saa.2012.01.006.

    Article  Google Scholar 

  15. Singh, R., Wagh, P., Wadhwani, S., Gaidhani, S., Kumbhar, A., Bellare, J., & Chopade, B. A. (2013). Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine, 8, 4277–4290. https://doi.org/10.2147/ijn.s48913.

    Google Scholar 

  16. Emmanuel, A., & Anthony, A. (2017). Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Advances in Natural Sciences. Nanoscience and Nanotechnology, 8(1), 015017.

    Google Scholar 

  17. Amini, N., Amin, G., & Jafari Azar, Z. (2017). Green synthesis of silver nanoparticles using Avena sativa L. extract. Nanomedicine Research Journal, 2(1), 57–63. https://doi.org/10.22034/nmrj.2017.23588.

    Google Scholar 

  18. Law, N., Ansari, S., Livens, F. R., Renshaw, J. C., & Lloyd, J. R. (2008). Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Applied and Environmental Microbiology, 74(22), 7090–7093. https://doi.org/10.1128/AEM.01069-08.

    Article  Google Scholar 

  19. Joshi, N., Ngwenya, B. T., & French, C. E. (2012). Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. Journal of Hazardous Materials, 241–242, 363–370. https://doi.org/10.1016/j.jhazmat.2012.09.057.

    Article  Google Scholar 

  20. Wigginton, N. S., de Titta, A., Piccapietra, F., Dobias, J., Nesatyy, V. J., Suter, M. J., & Bernier-Latmani, R. (2010). Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environmental Science & Technology, 44(6), 2163–2168. https://doi.org/10.1021/es903187s.

    Article  Google Scholar 

  21. Wang, H., Law, N., Pearson, G., van Dongen, B. E., Jarvis, R. M., Goodacre, R., & Lloyd, J. R. (2010). Impact of silver(I) on the metabolism of Shewanella oneidensis. Journal of Bacteriology, 192(4), 1143–1150. https://doi.org/10.1128/JB.01277-09.

    Article  Google Scholar 

  22. Manti, A., Boi, P., Falcioni, T., Canonico, B., Ventura, A., Sisti, D., Pianetti, A., Balsamo, M., & Papa, S. (2008). Bacterial cell monitoring in wastewater treatment plants by flow cytometry. Water Environment Research, 80(4), 346–354.

    Article  Google Scholar 

  23. Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.-G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13611–13614.

    Article  Google Scholar 

  24. Haefeli, C., Franklin, C., & Hardy, K. (1984). Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. Journal of Bacteriology, 158(1), 389–392.

    Google Scholar 

  25. Saravana Kumar, P., Balachandran, C., Duraipandiyan, V., Ramasamy, D., Ignacimuthu, S., & Al-Dhabi, N. A. (2015). Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Applied Nanoscience, 5(2), 169–180. https://doi.org/10.1007/s13204-014-0304-7.

    Article  Google Scholar 

  26. Mohanta, Y. K., & Behera, S. K. (2014). Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess and Biosystems Engineering, 37(11), 2263–2269. https://doi.org/10.1007/s00449-014-1205-6.

    Article  Google Scholar 

  27. Wypij, M., Golinska, P., Dahm, H., & Rai, M. (2017). Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria. IET Nanobiotechnology, 11(3), 336–342. https://doi.org/10.1049/iet-nbt.2016.0112.

    Article  Google Scholar 

  28. Tsibakhashvili, N. Y., Kirkesali, E. I., Pataraya, D. T., Gurielidze, M. A., Kalabegishvili, T. L., Gvarjaladze, D. N., Tsertsvadze, G. I., Frontasyeva, M. V., Zinicovscaia, I. I., Wakstein, M. S., Khakhanov, S. N., Shvindina, N. V., & Shklover, V. Y. (2011). Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Advanced Science Letters, 4(11-12), 3408–3417.

    Article  Google Scholar 

  29. Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., MubarakAli, D., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf B Biointerfaces, 102, 232–237. https://doi.org/10.1016/j.colsurfb.2012.08.018.

    Article  Google Scholar 

  30. Sadhasivam, S., Shanmugam, P., & Yun, K. (2010). Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces, 81(1), 358–362. https://doi.org/10.1016/j.colsurfb.2010.07.036.

    Article  Google Scholar 

  31. Golinska, P., Wypij, M., Rathod, D., Tikar, S., Dahm, H., & Rai, M. (2016). Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. Journal of Basic Microbiology, 56(5), 541–556. https://doi.org/10.1002/jobm.201500516.

    Article  Google Scholar 

  32. Manikprabhu, D., Cheng, J., Chen, W., Sunkara, A. K., Mane, S. B., Kumar, R., Das, M., Hozzein, W., Duan, Y. Q., & Li, W. J. (2016). Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus. Journal of Photochemistry and Photobiology. B, 158, 202–205. https://doi.org/10.1016/j.jphotobiol.2016.01.018.

    Article  Google Scholar 

  33. Kulkarni, R. R., Shaiwale, N. S., Deobagkar, D. N., & Deobagkar, D. D. (2015). Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. International Journal of Nanomedicine, 10, 963–974. https://doi.org/10.2147/IJN.S72888.

    Google Scholar 

  34. Singh, P., Singh, H., Kim, Y. J., Mathiyalagan, R., Wang, C., & Yang, D. C. (2016). Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme and Microbial Technology, 86, 75–83. https://doi.org/10.1016/j.enzmictec.2016.02.005.

    Article  Google Scholar 

  35. Buszewski, B., Railean-Plugaru, V., Pomastowski, P., Rafinska, K., Szultka-Mlynska, M., Golinska, P., Wypij, M., Laskowski, D., & Dahm, H. (2016). Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. Journal of Microbiology, Immunology, and Infection. https://doi.org/10.1016/j.jmii.2016.03.002.

  36. Railean-Plugaru, V., Pomastowski, P., Wypij, M., Szultka-Mlynska, M., Rafinska, K., Golinska, P., Dahm, H., & Buszewski, B. (2016). Study of silver nanoparticles synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil. Journal of Applied Microbiology, 120(5), 1250–1263. https://doi.org/10.1111/jam.13093.

    Article  Google Scholar 

  37. Singh, P., Kim, Y. J., Singh, H., Mathiyalagan, R., Wang, C., & Yang, D. C. (2015). Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. Journal of Nanomaterials, 2015, 10. https://doi.org/10.1155/2015/234741.

    Google Scholar 

  38. Singh, P., Kim, Y. J., Wang, C., Mathiyalagan, R., & Yang, D. C. (2015). Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artificial Cells, Nanomedicine, and Biotechnology, 44(6), 1569–1575. https://doi.org/10.3109/21691401.2015.1064937.

    Article  Google Scholar 

  39. Rathod, D., Golinska, P., Wypij, M., Dahm, H., & Rai, M. (2016). A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Medical Microbiology and Immunology, 205(5), 435–447. https://doi.org/10.1007/s00430-016-0462-1.

    Article  Google Scholar 

  40. Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine, 5(4), 452–456. https://doi.org/10.1016/j.nano.2009.01.012.

    Article  Google Scholar 

  41. Wang, C., Singh, P., Kim, Y. J., Mathiyalagan, R., Myagmarjav, D., Wang, D., Jin, C. G., & Yang, D. C. (2015). Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens. Artificial Cells, Nanomedicine, and Biotechnology, 44, 1714–1721. https://doi.org/10.3109/21691401.2015.1089253.

    Article  Google Scholar 

  42. Otari, S. V., Patil, R. M., Ghosh, S. J., Thorat, N. D., & Pawar, S. H. (2014). Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 136(Pt B), 1175–1180. https://doi.org/10.1016/j.saa.2014.10.003.

    Google Scholar 

  43. Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W., & Boon, N. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology, 84(4), 741–749. https://doi.org/10.1007/s00253-009-2032-6.

    Article  Google Scholar 

  44. Brayner, R., Barberousse, H., Hemadi, M., Djedjat, C., Yepremian, C., Coradin, T., Livage, J., Fievet, F., & Coute, A. (2007). Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. Journal of Nanoscience and Nanotechnology, 7(8), 2696–2708.

    Article  Google Scholar 

  45. Dhoondia, Z. H., Chakraborty, H. (2012). Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomaterials and Nanotechnology, 2, 1–7.

  46. Viorica, R. P., Pawel, P., Kinga, M., Michal, Z., Katarzyna, R., & Boguslaw, B. (2017). Lactococcus lactis as a safe and inexpensive source of bioactive silver composites. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-017-8443-x.

  47. Saravanan, C., Rajesh, R., Kaviarasan, T., Muthukumar, K., Kavitake, D., & Shetty, P. H. (2017). Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports (Amsterdam, Netherlands), 15, 33–40. https://doi.org/10.1016/j.btre.2017.02.006.

    Google Scholar 

  48. Mohammed Fayaz, A., Girilal, M., Rahman, M., Venkatesan, R., & Kalaichelvan, P. T. (2011). Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochemistry, 46(10), 1958–1962. https://doi.org/10.1016/j.procbio.2011.07.003.

    Article  Google Scholar 

  49. Tamboli, D. P., & Lee, D. S. (2013). Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. Journal of Hazardous Materials, 260, 878–884. https://doi.org/10.1016/j.jhazmat.2013.06.003.

    Article  Google Scholar 

  50. Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N., & Zheng, S. (2005). Biosorption and bioreduction of diamine silver complex by Corynebacterium. Journal of Chemical Technology & Biotechnology, 80(3), 285–290. https://doi.org/10.1002/jctb.1191.

    Article  Google Scholar 

  51. Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S., Kottaisamy, M., BarathmaniKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces, 77(2), 257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007.

    Article  Google Scholar 

  52. Pugazhenthiran, N., Anandan, S., Kathiravan, G., Udaya Prakash, N. K., Crawford, S., & Ashokkumar, M. (2009). Microbial synthesis of silver nanoparticles by Bacillus sp. Journal of Nanoparticle Research, 11(7), 1811. https://doi.org/10.1007/s11051-009-9621-2.

    Article  Google Scholar 

  53. Banu, A. N., Balasubramanian, C., & Moorthi, P. V. (2014). Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113(1), 311–316. https://doi.org/10.1007/s00436-013-3656-0.

    Article  Google Scholar 

  54. Kannan, N., Mukunthan, K. S., & Balaji, S. (2011). A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloids Surf B Biointerfaces, 86(2), 378–383. https://doi.org/10.1016/j.colsurfb.2011.04.024.

    Article  Google Scholar 

  55. Sathiyanarayanan, G., Seghal Kiran, G., & Selvin, J. (2013). Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids and Surfaces B: Biointerfaces, 102, 13–20. https://doi.org/10.1016/j.colsurfb.2012.07.032.

    Article  Google Scholar 

  56. Saifuddin, N., Wong, C. W., & Yasumira, A. A. N. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-Journal of Chemistry, 6(1), 61–70. https://doi.org/10.1155/2009/734264.

    Article  Google Scholar 

  57. Rane, A. N., Baikar, V. V., Ravi Kumar, V., & Deopurkar, R. L. (2017). Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Frontiers in Microbiology, 8, 492. https://doi.org/10.3389/fmicb.2017.00492.

    Article  Google Scholar 

  58. Zaki, S., El Kady, M. F., & Abd-El-Haleem, D. (2011). Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Materials Research Bulletin, 46(10), 1571–1576. https://doi.org/10.1016/j.materresbull.2011.06.025.

    Article  Google Scholar 

  59. Anuradha, P., Seema, S., Naheed, A., Ashok, G., & Preety, S. (2011). Synthesis of AgNPs by Bacillus Cereus bacteria and their antimicrobial potential. Journal of Biomaterials and Nanobiotechnology, 2(2), 155–161. https://doi.org/10.4236/jbnb.2011.22020.

    Article  Google Scholar 

  60. Pourali, P., & Yahyaei, B. (2016). Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. Journal of Trace Elements in Medicine and Biology, 34, 22–31. https://doi.org/10.1016/j.jtemb.2015.11.004.

    Article  Google Scholar 

  61. Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1127–1132. https://doi.org/10.3109/21691401.2015.1011805.

    Google Scholar 

  62. Elbeshehy, E. K., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Frontiers in Microbiology, 6, 453. https://doi.org/10.3389/fmicb.2015.00453.

    Article  Google Scholar 

  63. Shanthi, S., Jayaseelan, B. D., Velusamy, P., Vijayakumar, S., Chih, C. T., & Vaseeharan, B. (2016). Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microbial Pathogenesis, 93, 70–77. https://doi.org/10.1016/j.micpath.2016.01.014.

    Article  Google Scholar 

  64. El-Batal, A. I., Hashem, A. A., & Abdelbaky, N. M. (2013). Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity. Springerplus, 2(1), 129. https://doi.org/10.1186/2193-1801-2-129.

    Article  Google Scholar 

  65. Verma, S. K., Jha, E., Kumar Panda, P., Mishra, A., Thirumurugan, A., Das, B., Parashar, S. K. S., & Suar, M. (2017). Rapid novel facile biosynthesized Silver nanoparticles from Bacterial release induce biogenicity and concentration dependent in vivo cytotoxicity with embryonic Zebrafish—a mechanistic insight. Toxicological Science. https://doi.org/10.1093/toxsci/kfx204.

  66. Rezvani Amin, Z., Khashyarmanesh, Z., & Fazly Bazzaz, B. S. (2016). Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles. World Journal of Microbiology and Biotechnology, 32(9), 140. https://doi.org/10.1007/s11274-016-2110-8.

    Article  Google Scholar 

  67. El-Shanshoury, A. E.-R. R., ElSilk, S. E., & Ebeid, M. E. (2011). Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnology, 2011, 385480. https://doi.org/10.5402/2011/385480.

    Article  Google Scholar 

  68. Deepa, S., Kanimozhi, K., & Panneerselvam, A. (2013). Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. International Journal of Current Microbiology and Applied Sciences, 2, 223–230.

    Google Scholar 

  69. Juibari, M. M., Abbasalizadeh, S., Jouzani, G. S., & Noruzi, M. (2011). Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Materials Letters, 65(6), 1014–1017. https://doi.org/10.1016/j.matlet.2010.12.056.

    Article  Google Scholar 

  70. Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Research International, 2013, 287638. https://doi.org/10.1155/2013/287638.

    Google Scholar 

  71. Yumei, L., Yamei, L., Qiang, L., & Jie, B. (2017). Rapid biosynthesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from Arthrobacter sp. B4: its antimicrobial activity and phytotoxicity. Journal of Nanomaterials, 2017, 9703614. https://doi.org/10.1155/2017/9703614.

    Article  Google Scholar 

  72. Jo, J. H., Singh, P., Kim, Y. J., Wang, C., Mathiyalagan, R., Jin, C. G., & Yang, D. C. (2015). Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnologyy, 44(6), 1576–1581. https://doi.org/10.3109/21691401.2015.1068792 [pii].

    Article  Google Scholar 

  73. Srivastava, S. K., & Constanti, M. (2012). Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. Journal of Nanoparticle Research, 14(4), 1–10. https://doi.org/10.1007/s11051-012-0831-7.

    Article  Google Scholar 

  74. Kumar, C. G., & Mamidyala, S. K. (2011). Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 84(2), 462–466. https://doi.org/10.1016/j.colsurfb.2011.01.042.

    Article  Google Scholar 

  75. Peiris, M. K., Gunasekara, C. P., Jayaweera, P. M., Arachchi, N. D. H., & Fernando, N. (2017). Biosynthesized silver nanoparticles: are they effective antimicrobials? Memórias do Instituto Oswaldo Cruz, 112(8), 537–543. https://doi.org/10.1590/0074-02760170023.

    Article  Google Scholar 

  76. Quinteros, M. A., Aiassa Martinez, I. M., Dalmasso, P. R., & Paez, P. L. (2016). Silver nanoparticles: Biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. International Journal of Biomaterials, 2016, 5971047. https://doi.org/10.1155/2016/5971047.

    Article  Google Scholar 

  77. Naik, M. M., Prabhu, M. S., Samant, S. N., Naik, P. M., & Shirodkar, S. (2017). Synergistic action of silver nanoparticles synthesized from silver resistant estuarine Pseudomonas aeruginosa strain SN5 with antibiotics against antibiotic resistant bacterial human pathogens. Thalassas: an International Journal of Marine Sciences, 33(1), 73–80. https://doi.org/10.1007/s41208-017-0023-4.

    Article  Google Scholar 

  78. Kumari, R., Barsainya, M., & Singh, D. P. (2017). Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environmental Science and Pollution Research International, 24(5), 4645–4654. https://doi.org/10.1007/s11356-016-8170-3.

    Article  Google Scholar 

  79. Punjabi, K., Yedurkar, S., Doshi, S., Deshapnde, S., & Vaidya, S. (2017). Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry. IET Nanobiotechnology, 11(5), 584–590. https://doi.org/10.1049/iet-nbt.2016.0172.

    Article  Google Scholar 

  80. Ali, J., Hameed, A., Ahmed, S., Ali, M. I., Zainab, S., & Ali, N. (2016). Role of catalytic protein and stabilising agents in the transformation of Ag ions to nanoparticles by Pseudomonas aeruginosa. IET Nanobiotechnology, 10(5), 295–300. https://doi.org/10.1049/iet-nbt.2015.0093.

    Article  Google Scholar 

  81. Syed, B., Nagendra Prasad, M. N., Dhananjaya, B. L., Mohan Kumar, K., Yallappa, S., & Satish, S. (2016). Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzyme and Microbial Technology, 95, 128–136. https://doi.org/10.1016/j.enzmictec.2016.10.004.

    Article  Google Scholar 

  82. Kushwaha, A., Singh, V. K., Bhartariya, J., Singh, P., & Yasmeen, K. (2015). Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. European Journal of Experimental Biology, 5(1), 65–70.

    Google Scholar 

  83. Chumpol, J., Siri, S. (2017). Simple green production of silver nanoparticles facilitated by bacterial genomic DNA and their antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 1–7. https://doi.org/10.1080/21691401.2017.1332638.

  84. Du, J., Singh, H., & Yi, T. H. (2016). Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Artificial Cells, Nanomedicine, and Biotechnology, 45(2), 211–217. https://doi.org/10.1080/21691401.2016.1178135.

    Article  Google Scholar 

  85. Gahlawat, G., Shikha, S., Chaddha, B. S., Chaudhuri, S. R., Mayilraj, S., & Choudhury, A. R. (2016). Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microbial Cell Factories, 15, 25. https://doi.org/10.1186/s12934-016-0422-x.

    Article  Google Scholar 

  86. Thomas, R., Janardhanan, A., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Brazilian Journal of Microbiology, 45(4), 1221–1227.

    Article  Google Scholar 

  87. Rasulov, B., Rustamova, N., Yili, A., Zhao, H. Q., & Aisa, H. A. (2016). Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens. Folia Microbiologia (Praha), 61(4), 283–293. https://doi.org/10.1007/s12223-015-0436-5.

    Article  Google Scholar 

  88. Samadi, N., Golkaran, D., Eslamifar, A., Jamalifar, H., Fazeli, M. R., & Mohseni, F. A. (2009). Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. Journal of Biomedical Nanotechnology, 5(3), 247–253.

    Article  Google Scholar 

  89. Parikh, R. Y., Ramanathan, R., Coloe, P. J., Bhargava, S. K., Patole, M. S., Shouche, Y. S., & Bansal, V. (2011). Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One, 6(6), e21401. https://doi.org/10.1371/journal.pone.0021401.

    Article  Google Scholar 

  90. Kalpana, D., & Lee, Y. S. (2013). Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme and Microbial Technology, 52(3), 151–156. https://doi.org/10.1016/j.enzmictec.2012.12.006.

    Article  Google Scholar 

  91. Baldi, F., Daniele, S., Gallo, M., Paganelli, S., Battistel, D., Piccolo, O., Faleri, C., Puglia, A. M., & Gallo, G. (2016). Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells. Biometals, 29(2), 321–331. https://doi.org/10.1007/s10534-016-9918-4.

    Article  Google Scholar 

  92. Seshadri, S., Prakash, A., & Kowshik, M. (2012). Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bulletin of Materials Science, 35(7), 1201–1205. https://doi.org/10.1007/s12034-012-0417-0.

    Article  Google Scholar 

  93. Krishnaraj, R. N., & Berchmans, S. (2013). In vitro antiplatelet activity of silver nanoparticles synthesized using the microorganism Gluconobacter roseus: an AFM-based study. RSC Advances, 3(23), 8953–8959. https://doi.org/10.1039/c3ra41246f.

    Article  Google Scholar 

  94. Karthik, C., & Radha, K. V. (2012). Biosynthesis and characterization of silver nanoparticles using Enterobacter aerogenes: a kinetic approach. Digest Journal of Nanomaterials and Biostructures, 7, 1007–1014.

    Google Scholar 

  95. Singh, H., Du, J., & Yi, T. H. (2017). Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes. Artificial Cells, Nanomedicine, and Biotechnology, 45(3), 584–590. https://doi.org/10.3109/21691401.2016.1163715.

    Article  Google Scholar 

  96. Narayanan, K. B., & Sakthivel, N. (2013). Biosynthesis of silver nanoparticles by phytopathogen Xanthomonas oryzae pv. oryzae strain BXO8. Enzyme and Microbial Technology, 23(9), 1287–1292. https://doi.org/10.4014/jmb.1304.04047.

    Google Scholar 

  97. Rajeshkumar, S., & Malarkodi, C. (2014). In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorganic Chemistry and Applications, 2014, 10. https://doi.org/10.1155/2014/581890.

    Article  Google Scholar 

  98. Oves, M., Khan, M. S., Zaidi, A., Ahmed, A. S., Ahmed, F., Ahmad, E., Sherwani, A., Owais, M., & Azam, A. (2013). Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One, 8(3), e59140. https://doi.org/10.1371/journal.pone.0059140.

    Article  Google Scholar 

  99. Debabov, V. G., Voeikova, T. A., Shebanova, A. S., Shaitan, K. V., Emel'yanova, L. K., Novikova, L. M., & Kirpichnikov, M. P. (2013). Bacterial synthesis of silver sulfide nanoparticles. Nanotechnologies in Russia, 8(3), 269–276. https://doi.org/10.1134/s1995078013020043.

    Article  Google Scholar 

  100. Ramasamy, M., Lee, J. H., & Lee, J. (2016). Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. Journal of Biomaterials Applications, 31(3), 366–378. https://doi.org/10.1177/0885328216646910.

    Article  Google Scholar 

  101. Ahmed, K. B., Kalla, D., Uppuluri, K. B., & Anbazhagan, V. (2014). Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent. Carbohydrate Polymers, 112, 539–545. https://doi.org/10.1016/j.carbpol.2014.06.033.

    Article  Google Scholar 

  102. Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3(2), 168–171. https://doi.org/10.1016/j.nano.2007.02.001.

    Article  Google Scholar 

  103. Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Vanaja, M., Jobitha, G. D. G., & Annadurai, G. (2013). Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invention Today, 5(2), 119–125. https://doi.org/10.1016/j.dit.2013.05.005.

    Article  Google Scholar 

  104. Chun-Jing, C., & Hong-Juan, B. A. I. (2010). Biosynthesis of silver nanoparticles using the phototrophic bacteria Rhodopseudomonas palustris and its antimicrobial activity against Escherichia coli and Staphylococcus aureus. Microbiology Bulletin, 37(12), 1798–1804.

    Google Scholar 

  105. Bai, H.-J., Yang, B.-S., Chai, C.-J., Yang, G.-E., Jia, W.-L., & Yi, Z.-B. (2011). Green synthesis of silver nanoparticles using Rhodobacter sphaeroides. World Journal of Microbiology and Biotechnology, 27(11), 2723–2728. https://doi.org/10.1007/s11274-011-0747-x.

    Article  Google Scholar 

  106. Thomas, R., Jasim, B., Mathew, J., & Radhakrishnan, E. K. (2012). Extracellular synthesis of silver nanoparticles by endophytic Bordetella sp. isolated from Piper nigrum and its antibacterial activity analysis. Nano Biomedicine and Engineering, 4(4), 183–187.

    Article  Google Scholar 

  107. Ghorbani, H. (2013). Biosynthesis of silver nanoparticles using Salmonella typhirium. Journal of Nanostructure in Chemistry, 3, 1–4.

    Article  Google Scholar 

  108. Venil, C. K., Sathishkumar, P., Malathi, M., Usha, R., Jayakumar, R., Yusoff, A. R. M., & Ahmad, W. A. (2016). Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Materials Science & Engineering. C, Materials for Biological Applications, 59, 228–234. https://doi.org/10.1016/j.msec.2015.10.019.

    Article  Google Scholar 

  109. Syed, B., Yashavantha Rao, H. C., Nagendra-Prasad, M. N., Prasad, A., Harini, B. P., Azmath, P., Rakshith, D., & Satish, S. (2016). Biomimetic synthesis of silver nanoparticles using endosymbiotic bacterium inhabiting Euphorbia hirta L. and their bactericidal potential. Scientifica (Cairo), 2016, 9020239. https://doi.org/10.1155/2016/9020239.

    Google Scholar 

  110. Singh, G., Babele, P. K., Shahi, S. K., Sinha, R. P., Tyagi, M. B., & Kumar, A. (2014). Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. Journal of Microbial Biotechnology, 24(10), 1354–1367.

    Article  Google Scholar 

  111. Sudha, S. S., Rajamanickam, K., & Rengaramanujam, J. (2013). Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian Journal of Experimental Biology, 51(5), 393–399.

    Google Scholar 

  112. Ali, D. M., Sasikala, M., Gunasekaran, M., & Thajuddin, N. (2011). Biosynthesis and characterization of silver nanoparticles using marine Cyanobacterium, oscillatoria willei ntdm01. Digest Journal of Nanomaterials and Biostructures, 6(2), 385–390. https://doi.org/10.1155/2012/160145.

    Google Scholar 

  113. Lengke, M. F., Fleet, M. E., & Southam, G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 23(5), 2694–2699. https://doi.org/10.1021/la0613124.

    Article  Google Scholar 

  114. Srivastava, P., Braganca, J., Ramanan, S. R., & Kowshik, M. (2013). Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles, 17(5), 821–831. https://doi.org/10.1007/s00792-013-0563-3.

    Article  Google Scholar 

  115. Govindaraju, K., Basha, S. K., Kumar, V. G., & Singaravelu, G. (2008). Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, 43(15), 5115–5122. https://doi.org/10.1007/s10853-008-2745-4.

    Article  Google Scholar 

  116. Mahdieh, M., Zolanvari, A., & Azimee, A. S. (2012). Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica, 19(3), 926–929. https://doi.org/10.1016/j.scient.2012.01.010.

    Article  Google Scholar 

  117. Husain, S., Sardar, M., & Fatma, T. (2015). Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World Journal of Microbiology and Biotechnology, 31(8), 1279–1283. https://doi.org/10.1007/s11274-015-1869-3.

    Article  Google Scholar 

  118. Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports, 5, 112–119. https://doi.org/10.1016/j.btre.2014.12.001.

    Article  Google Scholar 

  119. Keskin, N. O. S., Kılıç, N. K., Turgay, T., & Gönül, D. (2016). Green synthesis of silver nanoparticles using Cyanobacteria and evaluation of their photocatalytic and antimicrobial activity. Journal of Nano Research, 40, 120–127.

    Article  Google Scholar 

  120. Al-Katib, M., Al-Shahri, Y., & Al-Niemi, A. (2015). Biosynthesis of silver nanoparticles by Cyanobacterium gloeocapsa sp. International Journal of Enhanced Research in Science, Technology & Engineering, 4(9), 60–73.

    Article  Google Scholar 

  121. Roychoudhury, P., Gopal, P. K., Paul, S., & Pal, R. (2016). Cyanobacteria assisted biosynthesis of silver nanoparticles—a potential antileukemic agent. Journal of Applied Phycology, 28(6), 3387–3394. https://doi.org/10.1007/s10811-016-0852-1.

    Article  Google Scholar 

  122. Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346. https://doi.org/10.1021/cr030698+.

    Article  Google Scholar 

  123. Bogunia-Kubik, K., & Sugisaka, M. (2002). From molecular biology to nanotechnology and nanomedicine. Biosystems, 65(2-3), 123–138. https://doi.org/10.1016/S0303-2647(02)00010-2.

    Article  Google Scholar 

  124. Zharov, V. P., Kim, J. W., Curiel, D. T., & Everts, M. (2005). Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine, 1(4), 326–345. https://doi.org/10.1016/j.nano.2005.10.006.

    Article  Google Scholar 

  125. Mulvaney, P. (1996). Surface plasmon spectroscopy of nano- sized metal particles. Langmuir, 12, 788–800.

    Article  Google Scholar 

  126. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. https://doi.org/10.1039/c1gc15386b.

    Article  Google Scholar 

  127. Fu, M., Li, Q., Sun, D., Lu, Y., He, N., Deng, X., Wang, H., & Huang, J. (2006). Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese Journal of Chemical Engineering, 14(1), 114–117.

    Article  Google Scholar 

  128. Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology, 42(11), 4133–4139.

    Article  Google Scholar 

  129. Zhang, Z., Zhang, X., Xin, Z., Deng, M., Wen, Y., & Song, Y. (2011). Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology, 22(42), 425601. https://doi.org/10.1088/0957-4484/22/42/425601.

    Article  Google Scholar 

  130. Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10(10), 5221–5238. https://doi.org/10.3390/ijerph10105221.

    Article  Google Scholar 

  131. Murugan, K., Senthilkumar, B., Senbagam, D., & Al-Sohaibani, S. (2014). Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. International Journal of Nanomedicin, 9, 2431–2438. https://doi.org/10.2147/IJN.S61779.

    Google Scholar 

  132. Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R., Deepak, V., & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces, 79(2), 340–344. https://doi.org/10.1016/j.colsurfb.2010.04.014.

    Article  Google Scholar 

  133. Fesharaki, P. J., Nazari, P., Shakibaie, M., Rezaie, S., Banoee, M., Abdollahi, M., & Shahverdi, A. R. (2010). Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian Journal of Microbiology, 41(2), 461–466. https://doi.org/10.1590/S1517-838220100002000028.

    Article  Google Scholar 

  134. Gurunathan, S., Raman, J., Abd Malek, S. N., John, P. A., & Vikineswary, S. (2013). Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. International Journal of Nanomedicine, 8, 4399–4413. https://doi.org/10.2147/IJN.S51881.

    Google Scholar 

  135. Deshpande, L. M., & Chopade, B. A. (1994). Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals, 7(1), 49–56.

    Article  Google Scholar 

  136. Deshpande, L. M., Kapadnis, B. P., & Chopade, B. A. (1993). Metal resistance in Acinetobacter and its relation to beta-lactamase production. Biometals, 6(1), 55–59.

    Article  Google Scholar 

  137. Dimkpa, C. O., Calder, A., Gajjar, P., Merugu, S., Huang, W., Britt, D. W., McLean, J. E., Johnson, W. P., & Anderson, A. J. (2011). Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 188(1-3), 428–435. https://doi.org/10.1016/j.jhazmat.2011.01.118.

    Article  Google Scholar 

  138. Quang Huy, T., Van Quy, N., & Anh-Tuan, L. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 033001.

    Google Scholar 

  139. Li, X. Z., Nikaido, H., & Williams, K. E. (1997). Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. Journal of Bacteriology, 179(19), 6127–6132.

    Article  Google Scholar 

  140. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R., Muniyandi, J., Hariharan, N., & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces, 74(1), 328–335. https://doi.org/10.1016/j.colsurfb.2009.07.048.

    Article  Google Scholar 

  141. Slawson, R. M., Van Dyke, M. I., Lee, H., & Trevors, J. T. (1992). Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid, 27(1), 72–79. https://doi.org/10.1016/0147-619X(92)90008-X.

    Article  Google Scholar 

  142. Annamalai, J., & Nallamuthu, T. (2016). Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Applied Nanoscience, 6, 259–265. https://doi.org/10.1007/s13204-015-0426-6.

    Article  Google Scholar 

  143. Arokiyaraj, S., Arasu, M. V., Vincent, S., Prakash, N. U., Choi, S. H., Oh, Y. K., Choi, K. C., & Kim, K. H. (2014). Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L. and its antibacterial and cytotoxic effects: an in vitro study. International Journal of Nanomedicine, 9, 379–388. https://doi.org/10.2147/IJN.S53546.

    Article  Google Scholar 

  144. Gordon, O., Vig Slenters, T. N., Brunetto, P. S., Villaruz, A. E., Sturdevant, D. E., Otto, M., Landmann, R., & Fromm, K. M. (2009). Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrobial Agents and Chemotherapy, 54(10), 4208–4218. https://doi.org/10.1128/aac.01830-09.

    Article  Google Scholar 

  145. Vigneshwaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P., & Balasubramanya, R. H. (2007). Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir, 23(13), 7113–7117. https://doi.org/10.1021/la063627p.

    Article  Google Scholar 

  146. Wang, F., Liu, B., Huang, P. J., & Liu, J. (2013). Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Analytical Chemistry, 85(24), 12144–12151. https://doi.org/10.1021/ac4033627.

    Article  Google Scholar 

  147. Thilakaraj, R., Raghunathan, K., Anishetty, S., & Pennathur, G. (2007). In silico identification of putative metal binding motifs. Bioinformatics, 23(3), 267–271. https://doi.org/10.1093/bioinformatics/btl617.

    Article  Google Scholar 

  148. Prakash, A., Sharma, S., Ahmad, N., Ghosh, A., & Sinha, P. (2011). Synthesis of AgNPs by Bacillus cereus bacteria and their antimicrobial potential. Journal of Biomaterials and Nanobiotechnology, 2, 155–161.

    Article  Google Scholar 

  149. Li, S. W., Zhang, X., & Sheng, G. P. (2016). Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria. Environmental Science and Pollution Research International, 23(9), 8627–8633. https://doi.org/10.1007/s11356-016-6105-7.

    Article  Google Scholar 

  150. Zhang, X., Yang, C. W., Yu, H. Q., & Sheng, G. P. (2016). Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). Water Research, 106, 242–248. https://doi.org/10.1016/j.watres.2016.10.004.

    Article  Google Scholar 

  151. Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces, 65(1), 150–153. https://doi.org/10.1016/j.colsurfb.2008.02.018.

    Article  Google Scholar 

  152. Graf, P., Mantion, A., Foelske, A., Shkilnyy, A., Masic, A., Thunemann, A. F., & Taubert, A. (2009). Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chemistry, 15(23), 5831–5844. https://doi.org/10.1002/chem.200802329.

    Article  Google Scholar 

  153. Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E., & Stone, M. O. (2002). Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, 1(3), 169–172. https://doi.org/10.1038/nmat758.

    Article  Google Scholar 

  154. Nam, H. Y., Hahn, H. J., Nam, K., Choi, W. H., Jeong, Y., Kim, D. E., & Park, J. S. (2008). Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. International Journal of Pharmaceutics, 363(1-2), 199–205. https://doi.org/10.1016/j.ijpharm.2008.07.021.

    Article  Google Scholar 

  155. Prasad, G. K., Ramacharyulu, P. V., Merwyn, S., Agarwal, G. S., Srivastava, A. R., Singh, B., Rai, G. P., & Vijayaraghavan, R. (2010). Photocatalytic inactivation of spores of Bacillus anthracis using titania nanomaterials. Journal of Hazardous Materials, 185(2-3), 977–982. https://doi.org/10.1016/j.jhazmat.2010.10.001.

    Article  Google Scholar 

  156. Selvakannan, P. R., Swami, A., Srisathiyanarayanan, D., Shirude, P. S., Pasricha, R., Mandale, A. B., & Sastry, M. (2004). Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir, 20(18), 7825–7836. https://doi.org/10.1021/la049258j.

    Article  Google Scholar 

  157. Si, S., & Mandal, T. K. (2007). Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chemistry, 13(11), 3160–3168. https://doi.org/10.1002/chem.200601492.

    Article  Google Scholar 

  158. Anandan, S., & Ashokkumar, M. (2009). Sonochemical synthesis of Au-TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrasonics Sonochemistry, 16(3), 316–320. https://doi.org/10.1016/j.ultsonch.2008.10.010.

    Article  Google Scholar 

  159. Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: current state and future perspectives. Biotechnology and Bioengineering, 109(10), 2422–2436. https://doi.org/10.1002/bit.24570.

    Article  Google Scholar 

  160. Syed, A., Saraswati, S., Kundu, G. C., & Ahmad, A. (2013). Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 114, 144–147. https://doi.org/10.1016/j.saa.2013.05.030.

    Article  Google Scholar 

  161. Kulkarni, S. A., & Feng, S. S. (2013). Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharmaceutical Research, 30(10), 2512–2522. https://doi.org/10.1007/s11095-012-0958-3.

    Article  Google Scholar 

  162. Sangappa, M., & Thiagarajan, P. (2015). Combating drug resistant pathogenic bacteria isolated from clinical infections, with silver oxide nanoparticles. Indian Journal of Pharmaceutical Sciences, 77(2), 151–155.

    Article  Google Scholar 

  163. Abdeen, S., Geo, S., Sukanya, S., Praseetha, P. K., & Dhanya, R. P. (2014). Biosynthesis of Silver nanoparticles from Actinomycetes for therapeutic applications. International Journal of Nano Dimension, 5(2), 155–162. https://doi.org/10.7508/ijnd.2014.02.008.

    Google Scholar 

  164. Patra, J. K., & Baek, K.-H. (2017). Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in Microbiology, 8, 167. https://doi.org/10.3389/fmicb.2017.00167.

    Article  Google Scholar 

  165. Morales-Avila, E., Ferro-Flores, G., Ocampo, G., López-Téllez, G., López-Ortega, J., Rogel-Ayala, D. G., & Sánchez-Padilla, D. (2017). Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin (29–41) antimicrobial peptide. Journal of Nanomaterials, 2017, 5831959. https://doi.org/10.1155/2017/5831959.

    Article  Google Scholar 

  166. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advance, 4, 3974–3983.

    Article  Google Scholar 

  167. Rawashdeh, R., & Haik, Y. (2009). Antibacterial mechanisms of metallic nanoparticles: A Review. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 3(2), 12–20.

    Google Scholar 

  168. Agnihotri, S., & Mukherji, S. (2013). Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5(16), 7328–7340. https://doi.org/10.1039/c3nr00024a.

    Article  Google Scholar 

  169. Sotiriou, G. A., Meyer, A., Knijnenburg, J. T., Panke, S., & Pratsinis, S. E. (2012). Quantifying the origin of released Ag+ ions from nanosilver. Langmuir, 28(45), 15929–15936. https://doi.org/10.1021/la303370d.

    Article  Google Scholar 

  170. Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171–2178. https://doi.org/10.1128/AEM.02001-07.

    Article  Google Scholar 

  171. Maiti, S., Krishnan, D., Barman, G., Ghosh, S. K., & Laha, J. K. (2014). Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. Journal of Analytical Science and Technology, 5(1), 40. https://doi.org/10.1186/s40543-014-0040-3.

    Article  Google Scholar 

  172. Ahearn, D. G., May, L. L., & Gabriel, M. M. (1995). Adherence of organisms to silver-coated surfaces. Journal of Industrial Microbiology, 15(4), 372–376. https://doi.org/10.1007/bf01569993.

    Article  Google Scholar 

  173. Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine, 5(4), 382–386. https://doi.org/10.1016/j.nano.2009.06.005.

    Article  Google Scholar 

  174. Musarrat, J., Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., Azam, A., & Naqvi, A. (2010). Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technology, 101(22), 8772–8776. https://doi.org/10.1016/j.biortech.2010.06.065.

    Article  Google Scholar 

  175. Mallmann, E. J., Cunha, F. A., Castro, B. N., Maciel, A. M., Menezes, E. A., & Fechine, P. B. (2015). Antifungal activity of silver nanoparticles obtained by green synthesis. Revista do Instituto de Medicina Tropical de São Paulo, 57(2), 165–167. https://doi.org/10.1590/S0036-46652015000200011.

    Article  Google Scholar 

  176. Bahrami-Teimoori, B., Nikparast, Y., Hojatianfar, M., Akhlaghi, M., Ghorbani, R., & Pourianfar, H. R. (2017). Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. Journal of Experimental Nanoscience, 12(1), 129–139. https://doi.org/10.1080/17458080.2017.1279355.

  177. Sambale, F., Wagner, S., Stahl, F., Khaydarov, R. R., Scheper, T., & Bahnemann, D. (2015). Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. Journal of Nanomaterials, 2015, 136765. https://doi.org/10.1155/2015/136765.

    Google Scholar 

  178. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., & Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19(7), 975–983. https://doi.org/10.1016/j.tiv.2005.06.034.

    Article  Google Scholar 

  179. Lee, Y. H., Cheng, F. Y., Chiu, H. W., Tsai, J. C., Fang, C. Y., Chen, C. W., & Wang, Y. J. (2014). Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials, 35(16), 4706–4715. https://doi.org/10.1016/j.biomaterials.2014.02.021.

    Article  Google Scholar 

  180. Peng, H., Zhang, X., Wei, Y., Liu, W., Li, S., Yu, G., Fu, X., Cao, T., & Deng, X. (2012). Cytotoxicity of silver nanoparticles in human embryonic stem cell-derived fibroblasts and an L-929 cell line. Journal of Nanomaterials, 2012, 9. https://doi.org/10.1155/2012/160145.

    Article  Google Scholar 

  181. Sahu, P. K., Iyer, P. S., Barage, S. H., Sonawane, K. D., & Chopade, B. A. (2014). Characterization of the algC gene expression pattern in the multidrug resistant Acinetobacter baumannii AIIMS 7 and correlation with biofilm development on abiotic surface. Scientific World Journal, 2014, 593546. https://doi.org/10.1155/2014/593546.

    Article  Google Scholar 

  182. Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews. Drug Discovery, 2(2), 114–122. https://doi.org/10.1038/nrd1008.

    Article  Google Scholar 

  183. Kostenko, V., Lyczak, J., Turner, K., & Martinuzzi, R. J. (2010). Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrobial Agents and Chemotherapy, 54(12), 5120–5131. https://doi.org/10.1128/AAC.00825-10.

    Article  Google Scholar 

  184. Brackman, G., De Meyer, L., Nelis, H. J., & Coenye, T. C. (2013). Biofilm inhibitory and eradicating activity of wound care products against Staphylococcus aureus and Staphylococcus epidermidis biofilms in an in vitro chronic wound model. Journal of Applied Microbiology, 114(6), 1833–1842. https://doi.org/10.1111/jam.12191.

    Article  Google Scholar 

  185. Yaolin, F., Patrick, Y.-L., Temitope Azeezat, A., & Kimberly, L. J. (2017). Impact of sulfidation of silver nanoparticles on established P. aeruginosa biofilm. Journal of Biomaterials and Nanobiotechnology, 8, 14. https://doi.org/10.4236/jbnb.2017.81006.

    Google Scholar 

  186. Gaidhani, S. V., Raskar, A. V., Poddar, S., Gosavi, S., Sahu, P. K., Pardesi, K. R., Bhide, S. V., & Chopade, B. A. (2014). Time dependent enhanced resistance against antibiotics and metal salts by planktonic and biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate. The Indian Journal of Medical Research, 140(5), 665–671.

    Google Scholar 

  187. Flores, C. Y., Minan, A. G., Grillo, C. A., Salvarezza, R. C., Vericat, C., & Schilardi, P. L. (2013). Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Applied Materials & Interfaces, 5(8), 3149–3159. https://doi.org/10.1021/am400044e.

    Article  Google Scholar 

  188. Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., & Alzohairy, M. A. (2015). Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian Journal of Medical Microbiology, 33(1), 101–109. https://doi.org/10.4103/0255-0857.148402.

    Article  Google Scholar 

  189. Mu, H., Tang, J., Liu, Q., Sun, C., Wang, T., & Duan, J. (2016). Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Scientific Reports, 6, 18877. https://doi.org/10.1038/srep18877.

    Article  Google Scholar 

  190. Rodriguez Couto, S. (2009). Dye removal by immobilised fungi. Biotechnology Advances, 27(3), 227–235. https://doi.org/10.1016/j.biotechadv.2008.12.001.

    Article  Google Scholar 

  191. Ahmad, A., Razali, M. H., Mamat, M., Mehamod, F. S. B., & Anuarmatamin, K. (2017). Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites. Chemosphere, 168(Supplement C), 474–482. https://doi.org/10.1016/j.chemosphere.2016.11.028.

    Article  Google Scholar 

  192. Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I., & Prasad, R. (2015). Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir, 31(42), 11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081.

    Article  Google Scholar 

  193. Shi, C., Zhu, N., Cao, Y., & Wu, P. (2015). Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Research Letters, 10, 147, 1–8. https://doi.org/10.1186/s11671-015-0856-9.

  194. Roy, K., Sarkar, C. K., & Ghosh, C. K. (2014). Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Applied Nanoscience, 5(8), 953–959. https://doi.org/10.1007/s13204-014-0392-4.

    Article  Google Scholar 

  195. Chen, A., Contreras, L. M. (2017). Imposed environmental stresses facilitate cell-free nanoparticle formation by Deinococcus radiodurans. Applied and Environmental Microbiology, 83(18), e00798–17. https://doi.org/10.1128/aem.00798-17

  196. Saha, J., Begum, A., Mukherjee, A., & Kumar, S. (2017). A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustainable Environment Research, 27(5), 245–250. https://doi.org/10.1016/j.serj.2017.04.003.

    Article  Google Scholar 

  197. Otari, S. V., Patil, R. M., Nadaf, N. H., Ghosh, S. J., & Pawar, S. H. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environmental Science and Pollution Research International, 21(2), 1503–1513. https://doi.org/10.1007/s11356-013-1764-0.

    Article  Google Scholar 

  198. Khan, M. E., Khan, M. M., & Cho, M. H. (2015). Biogenic synthesis of a Ag-graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New Journal of Chemistry, 39(10), 8121–8129. https://doi.org/10.1039/c5nj01320h.

    Article  Google Scholar 

  199. Orlowski, P., Tomaszewska, E., Gniadek, M., Baska, P., Nowakowska, J., Sokolowska, J., Nowak, Z., Donten, M., Celichowski, G., Grobelny, J., & Krzyzowska, M. (2014). Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One, 9(8), e104113. https://doi.org/10.1371/journal.pone.0104113.

    Article  Google Scholar 

  200. Sun, R. W., Chen, R., Chung, N. P., Ho, C. M., Lin, C. L., Che, C. M. (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications (Cambridge, England), (40), 5059–5061. https://doi.org/10.1039/b510984a.

  201. Lawn, S. D., Butera, S. T., & Folks, T. M. (2001). Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clinical Microbiology Reviews, 14(4), 753–777. https://doi.org/10.1128/CMR.14.4.753-777.2001.

    Article  Google Scholar 

  202. Lara, H. H., Ayala-Nunez, N. V., Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology, 8, 1. https://doi.org/10.1186/1477-3155-8-1.

    Article  Google Scholar 

  203. Naganawa, S., Yokoyama, M., Shiino, T., Suzuki, T., Ishigatsubo, Y., Ueda, A., Shirai, A., Takeno, M., Hayakawa, S., Sato, S., Tochikubo, O., Kiyoura, S., Sawada, K., Ikegami, T., Kanda, T., Kitamura, K., & Sato, H. (2008). Net positive charge of HIV-1 CRF01_AE V3 sequence regulates viral sensitivity to humoral immunity. PLoS One, 3(9), e3206. https://doi.org/10.1371/journal.pone.0003206.

    Article  Google Scholar 

  204. Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3, 6. https://doi.org/10.1186/1477-3155-3-6.

    Article  Google Scholar 

  205. Borkow, G., & Lapidot, A. (2005). Multi-targeting the entrance door to block HIV-1. Current Drug Targets. Infectious Disorders, 5(1), 3–15.

    Article  Google Scholar 

  206. Salunkhe, R. B., Patil, S. V., Patil, C. D., & Salunke, B. K. (2011). Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitology Research, 109(3), 823–831. https://doi.org/10.1007/s00436-011-2328-1.

    Article  Google Scholar 

  207. Shanmugasundaram, T., & Balagurunathan, R. (2015). Mosquito larvicidal activity of silver nanoparticles synthesised using actinobacterium, Streptomyces sp. M25 against Anopheles subpictus, Culex quinquefasciatus and Aedes aegypti. Journal of Parasitic Diseases, 39(4), 677–684. https://doi.org/10.1007/s12639-013-0412-4.

    Article  Google Scholar 

  208. Adesuji, E. T., Oluwaniyi, O. O., Adegoke, H. I., Moodley, R., Labulo, A. H., Bodede, O. S., & Oseghale, C. O. (2016). Investigation of the larvicidal potential of silver nanoparticles against Culex quinquefasciatus: a case of a ubiquitous weed as a useful bioresource. Journal of Nanomaterials, 2016, 1–11. https://doi.org/10.1155/2016/4363751.

  209. Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., & Xing, M. M. (2014). Nanosilver particles in medical applications: synthesis, performance, and toxicity. International Journal of Nanomedicine, 9, 2399–2407. https://doi.org/10.2147/IJN.S55015.

    Google Scholar 

  210. Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers, S., De Jong, W. H., van Zijverden, M., Sips, A. J. A. M., & Geertsma, R. E. (2009). Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3(2), 109–138. https://doi.org/10.1080/17435390902725914.

    Article  Google Scholar 

  211. Lohani, A., Verma, A., Joshi, H., Yadav, N., & Karki, N. (2014). Nanotechnology-based cosmeceuticals. ISRN Dermatology, 2014, 1–14. https://doi.org/10.1155/2014/843687.

  212. Alfadul, S. M., & Elneshwy, A. A. (2010). Use of nanotechnology in food processing, packaging and safety—review. African Journal of Food Agriculture Nutrition and Development, 10(6), 2719–2739.

    Article  Google Scholar 

  213. Huang, Y., Chen, S., Bing, X., Gao, C., Wang, T., & Yuan, B. (2011). Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technology and Science, 24(5), 291–297. https://doi.org/10.1002/pts.938.

    Article  Google Scholar 

  214. Reidy, B. A., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials, 6(6), 2295–2350. https://doi.org/10.3390/ma6062295.

    Article  Google Scholar 

  215. Cao, H., & Liu, X. (2010). Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2(6), 670–684. https://doi.org/10.1002/wnan.113.

    Google Scholar 

  216. Austin, L. A., Kang, B., Yen, C. W., & El-Sayed, M. A. (2011). Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjugate Chemistry, 22(11), 2324–2331. https://doi.org/10.1021/bc200386m.

    Article  Google Scholar 

  217. Wong, K. K. Y., & Liu, X. (2010). Silver nanoparticles-the real “silver bullet” in clinical medicine? Medicinal Chemistry Communications, 1(2), 125–131. https://doi.org/10.1039/c0md00069h.

    Article  Google Scholar 

Download references

Funding

The authors acknowledged the Department of Biotechnology, School of Engineering and Technology, Sharda University, India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlurrahman Khan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javaid, A., Oloketuyi, S.F., Khan, M.M. et al. Diversity of Bacterial Synthesis of Silver Nanoparticles. BioNanoSci. 8, 43–59 (2018). https://doi.org/10.1007/s12668-017-0496-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0496-x

Keywords

Navigation