Skip to main content
Log in

Effect of Ultrasonic Treatment on Solidification Microstructure of a New Nickel-Based Superalloy 4716MA0

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The solidification microstructure of 4716MA0 Ni-based superalloy was studied by ultrasonic treatment. The precipitation behavior of 4716MA0 were observed by means of optical microscopy, scanning electron microscope (SEM + EDS) and X-ray diffraction, and the reasons for the change of microstructure were explained. The results show that the coarse dendrites change into the equiaxed crystals, and the grain size is refined from 266 to 102 μm. It mainly consists of γ matrix phase, γ′ reinforced phase, γ/γ′ eutectic and MC carbides. The area fraction of shrinkage cavities, carbides and γ/γ′ eutectic are decreased from 3.26 to 0.67%, 12.66 to 6.24%, and 15.38 to 7.88%, respectively. The cavitation effect and acoustic streaming effect of ultrasonic can improve the undercooling of melt components, promote grain nucleation and prevent grain growth, at the same time, the composition segregation is inhibited and the number of carbides and γ/γ′ eutectic is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Zhang J, Wang L, Wang D, Xie G, and Lou L H, Acta Metall Sin 55 (2019) 1077. https://doi.org/10.11900/0412.1961.2019.00122

    Article  CAS  Google Scholar 

  2. Haghayeghi R, Heydari A, and Kapranos P, Mater Lett 153 (2015) 175.

    Article  CAS  Google Scholar 

  3. Jian X, Xu H, Meek T T, and Han Q, Mater Lett 59 (2005) 190.

    Article  CAS  Google Scholar 

  4. Patel B, Chaudhari G P, and Bhingole PP, Mater Lett 66 (2012) 335.

    Article  CAS  Google Scholar 

  5. Nagasivamuni B, and Ravi K R, Trans Indian Inst Met 68 (2015) 1161.

    Article  CAS  Google Scholar 

  6. Hong X L, Xiu F G, Sen F Z, Liang W, and Li P N, Int J Miner Metall Mater 27 (2020) 943.

    Article  Google Scholar 

  7. Li Q Q, Zhang Y, Chen J, Guo B G, and Liu Y, J Mater Sci Technol 70 (2021) 185.

    Article  CAS  Google Scholar 

  8. Zhu L D, Yang Z C, Xin B, Wang S H, and Xue P S, J Mater Sci Technol 410 (2021) 126964. org/https://doi.org/10.1016/j.surfcoat.2021.126964.

    Article  CAS  Google Scholar 

  9. Neeraj S and Chaudhari G P, Mater Sci Technol 35 (2019) 1239.

    Article  Google Scholar 

  10. Li Q, Xie J, Yu J J, Shu D L, and Zhou Y Z, J Alloy Compd, 854 (2021) 156027.

    Article  CAS  Google Scholar 

  11. Li X X, Jia C L, Jiang Z H, Zhang Y, and Lv S M, JOM J Miner Met Mater Soc 72 (2020) 4139.

    Article  CAS  Google Scholar 

  12. Gong L, Chen B, Du Z H, Zhang M S, and Liu K, J Mater Sci Technol 34 (2018) 541.

    Article  CAS  Google Scholar 

  13. Moreira M F, Fantin L B, and Azevedo C R F, Int J Met, 15 (2021) 676. https://doi.org/10.1007/s40962-020-00496-1

    Article  CAS  Google Scholar 

  14. Du B N, Hu Z Y, Sheng L Y, Cui C Y, and Sun X F, J Mater Sci Technol, 34 (2018) 1805.

    Article  CAS  Google Scholar 

  15. Kang M D, Wang J, Gao H Y, Han Y F, and He S X, Materials 10 (2017) 250.

    Article  Google Scholar 

  16. Kwak S Y, Cheng J, and Choi J K, China Foundry 8 (2011) 112.

    Google Scholar 

  17. Cheng H, Kang L, Pang J C, Xue, B C, and Chang B H, Opt Laser Technol 139 (2021) 106962.

    Article  CAS  Google Scholar 

  18. Liang G, Shi C, Zhou Y J, and Mao D H, Metals 6 (2016) 260. https://doi.org/10.3390/met6110260

    Article  Google Scholar 

  19. Martorano M A, Beckermann C, and Gandin C A, Metall Mater Trans A Phys Metall Mater Sci 35A (2004) 1915. https://doi.org/10.1007/s11661-004-0101-0

    Article  Google Scholar 

  20. Martorano M A and Biscuola V B, Acta Mater 57 (2009) 607.

    Article  CAS  Google Scholar 

  21. Leighton T G, Ultrason Sonochem 2 (1995) S123.

    Article  Google Scholar 

  22. Sri Harini R, Raj B, and Ravi K R, Trans Indian Inst Met 68 (2015) 1059.

    Article  CAS  Google Scholar 

  23. Raghu R, Jayakrishnan N, Kumar S T, and Subramanian R, Trans Indian Inst Met 72 (2019) 1013.

    Article  CAS  Google Scholar 

  24. Rajagopal S, J Appl Metalwork 1 (1981) 3.

    Article  CAS  Google Scholar 

  25. Hilpert K, Kobertz D, and Venugopal V, Sect A-J Phys Sci 42 (1987) 1327. https://doi.org/10.1515/zna-1987-1117

    Article  CAS  Google Scholar 

  26. Kim D K, Kim D H, Choo D K, and Moon H K, Met Mater Int 2 (1996) 211.

    Article  CAS  Google Scholar 

  27. Zhang W G and Liu L, Rare Metals 31 (2012) 541.

    Article  CAS  Google Scholar 

  28. Dai W L, Mater Lett 57 (2003) 2447

    Article  CAS  Google Scholar 

  29. Li X T, Li T J, Li X M, and Jin J Z, Ultrason Sonochem 13 (2006) 121.

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the fund of State Key Laboratory of Long-life High Temperature Materials (DTCC28EE200795) and Technology Project of Nanchong and Southwest Petroleum University (SWPU) Cooperation (No. SXQHJH032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wen, P., Gong, X. et al. Effect of Ultrasonic Treatment on Solidification Microstructure of a New Nickel-Based Superalloy 4716MA0. Trans Indian Inst Met 75, 2107–2115 (2022). https://doi.org/10.1007/s12666-022-02588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02588-4

Keywords

Navigation