Skip to main content
Log in

State-of-the-art on geotechnical engineering perspective on bio-mediated processes

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Geotechnical engineering has primarily focused on the mechanical and physical aspects of geomaterials (both naturally occurring and anthropogenic) by, to a certain extent, ignoring the effect of various bio-activities (by plants and microorganisms) impinging on them. However, in recent years, researchers have investigated ‘bio-mediated soil improvement techniques’ such as bio-cementation, bio-clogging, bio-remediation and phytoremediation. Further, the studies from geo-microbiology and hydrometallurgy perspectives demonstrate that microbial activities in geoenvironment might result in its degradation, mineral deposition and mineralogical alteration, and hence influence of these activities on geomaterials should be understood, and investigated, in detail. With this in view, a review of the processes induced/influenced by various biological activities that might impact the geomaterials and their performance, from the geotechnical engineering point of view, has been reported in this manuscript. Furthermore, a need for revamping the conventional geotechnical engineering practices by assimilating the concepts of bio-activities occurring in geomaterials has been discussed, and the challenges and a way forward to incorporate them have also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al Qabany A, Soga K (2013) Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique 63(4):331–339. doi:10.1680/geot.SIP13.P.022

    Article  Google Scholar 

  • Araujo ASF, Miranda ARL, Oliveira MLJ, Santos VM, Nunes LAPL, Melo WJ (2015) Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge. Environ Monit Assess 187(1):4153. doi:10.1007/s10661-014-4153-3

    Article  Google Scholar 

  • Aryal M, Liakopoulou-kyriakides M (2015) Bioremoval of heavy metals by bacterial biomass. Environ Monit Assess 187(1):1–26. doi:10.1007/s10661-014-4173-z

    Article  Google Scholar 

  • Barker WW, Banfield JF (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiol J 15(3):223–244. doi:10.1080/01490459809378078

    Article  Google Scholar 

  • Barré P, Velde B, Abbadie L (2007) Dynamic role of “illite-like” clay minerals in temperate soils: facts and hypotheses. Biogeochemistry 82(1):77–88. doi:10.1007/s10533-006-9054-2

    Article  Google Scholar 

  • Bazylinski DA, Schübbe S (2007) Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol 62:21–62. doi:10.1016/S0065-2164(07)62002-4

    Article  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15(3):181–186. doi:10.1016/j.copbio.2004.05.001

    Article  Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ, Hiebert FK (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18(1):3–19. doi:10.1080/01490450151079734

    Article  Google Scholar 

  • Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Férard C (2011) Significance, mechanisms and environmental implications of microbial biomineralization. C R Geosci 343(2–3):160–167. doi:10.1016/j.crte.2010.09.002

    Article  Google Scholar 

  • Bhandari A, Dove CD, Novak JT (1995) Soil washing and biotreatment of petroleum-contaminated soils. J Environ Eng 120(5):1151–1169

    Article  Google Scholar 

  • Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88(1):45–53

    Google Scholar 

  • Blyth AJ, Frisia S (2008) Molecular evidence for bacterial mediation of calcite formation in cold high-altitude caves. Geomicrobiol J 25(2):101–111. doi:10.1080/01490450801934938

    Article  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Cappellen P Van, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23. doi:10.1021/es9026248

    Article  Google Scholar 

  • Bramley-Alves J, Wasley J, King CK, Powell S, Robinson SA (2014) Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option. J Environ Manage 142:60–69. doi:10.1016/j.jenvman.2014.04.019

    Article  Google Scholar 

  • Brierley CL (1990) Bioremediation of metal-contaminated surface and groundwaters. Geomicrobiol J 8(3–4):201–223. doi:10.1080/01490459009377894

    Article  Google Scholar 

  • Brierley JA, Brierley C (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59(2–3):233–239. doi:10.1016/S0304-386X(00)00162-6

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124(1–2):3–22. doi:10.1016/j.geoderma.2004.03.005

    Article  Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Article  Google Scholar 

  • Cammeraat E, van Beek R, Kooijman A (2005) Vegetation succession and its consequences for slope stability in SE Spain. Plant Soil 278(1–2):135–147. doi:10.1007/s11104-005-5893-1

    Article  Google Scholar 

  • Cerdà A (1998) Soil aggregate stability under different Mediterranean vegetation types. Catena 32(2):73–86. doi:10.1016/S0341-8162(98)00041-1

    Article  Google Scholar 

  • Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72. doi:10.1016/j.ecoleng.2012.01.013

    Article  Google Scholar 

  • Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50:81–90. doi:10.1139/cgj-2012-0023

    Article  Google Scholar 

  • Christensen H, Hansen M, Sørensen J (1999) Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rrna oligonucleotide probe counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide p. Appl Environ Microbiol 65(4):1753–1761

    Google Scholar 

  • Churchman G (1980) Clay minerals formed from micas and chlorites in some new zealand soils. Clay Miner 15:59–76

    Article  Google Scholar 

  • Cockell CS, Herrera A (2008) Why are some microorganisms boring? Trends Microbiol 16(3):101–106. doi:10.1016/j.tim.2007.12.007

    Article  Google Scholar 

  • Cutler N, Viles H (2010) Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol J 27(6–7):630–646. doi:10.1080/01490451003702933

    Article  Google Scholar 

  • Dade WB, Self RL, Pellerin NB, Moffer A, Jumars PA, Nowell ARM (1996) The effects of bacteria on the flow behavior of clay-seawater suspensions. SEPM J Sediment Res 66(1):39–42. doi:10.1306/D42682A7-2B26-11D7-8648000102C1865D

    Google Scholar 

  • Decho AW (2010) Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol Eng 36(2):137–144. doi:10.1016/j.ecoleng.2009.01.003

    Article  Google Scholar 

  • DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392

    Article  Google Scholar 

  • DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36:197–210. doi:10.1016/j.ecoleng.2008.12.029

    Article  Google Scholar 

  • Dettling MD, Yavitt JB, Cadillo-Quiroz H, Sun C, Zinder SH (2007) Soil-Methanogen interactions in two peatlands (Bog, Fen) in Central New York State. Geomicrobiol J 24(3–4):247–259. doi:10.1080/01490450701456651

    Article  Google Scholar 

  • Dong H (2010) Mineral-microbe interactions: a review. Front Earth Sci China 4(2):127–147. doi:10.1007/s11707-010-0022-8

    Article  Google Scholar 

  • Droppo IG (2001) Rethinking what constitutes suspended sediment. Hydrol Process 15(9):1551–1564. doi:10.1002/hyp.228

    Article  Google Scholar 

  • Droppo IG (2004) Structural controls on floc strength and transport. Can J Civ Eng 31(4):569–578. doi:10.1139/l04-015

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96(3):141–162. doi:10.1016/j.earscirev.2008.10.005

    Article  Google Scholar 

  • Edwards KJ, Bach W, McCollom TM (2005) Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends Microbiol 13(9):449–456. doi:10.1016/j.tim.2005.07.005

    Article  Google Scholar 

  • Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihring TM, Cardona MM, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at iron mountain, California. Geomicrobiol J 16(2):155–179. doi:10.1080/014904599270668

    Article  Google Scholar 

  • Efroymson RA, Ii GWS (2012) Finding a niche for soil microbial toxicity tests in ecological risk assessment. Hum Ecol Risk Assess Int J 5(4):715–727. doi:10.1080/10807039.1999.9657736

    Article  Google Scholar 

  • Egli M, Mirabella A, Sartori G (2008) The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology 102(3–4):307–324. doi:10.1016/j.geomorph.2008.04.001

    Article  Google Scholar 

  • Ehrlich H (1996) How microbes influence mineral growth and dissolution. Chem Geol 132(1–4):5–9. doi:10.1016/S0009-2541(96)00035-6

    Article  Google Scholar 

  • Ehrlich H (1998) Geomicrobiology: its significance for geology. Earth Sci Rev 45(1–2):45–60. doi:10.1016/S0012-8252(98)00034-8

    Article  Google Scholar 

  • Ehrlich H (2002) Geomicrobiology, 4th edn. Marcel Dekker Inc, New York

    Google Scholar 

  • Fan C-C, Lai Y-F (2013) Influence of the spatial layout of vegetation on the stability of slopes. Plant Soil 377(1–2):83–95. doi:10.1007/s11104-012-1569-9

    Google Scholar 

  • Fattet M, Fu Y, Ghestem M, Ma W, Foulonneau M, Nespoulous J, Stokes A (2011) Effects of vegetation type on soil resistance to erosion: relationship between aggregate stability and shear strength. Catena 87(1):60–69. doi:10.1016/j.catena.2011.05.006

    Article  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54(1):95–114

    Article  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28(1):55–63

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49. doi:10.1016/j.mycres.2006.12.001

    Article  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. doi:10.1099/mic.0.037143-0

    Article  Google Scholar 

  • Gadd GM, Raven JA (2010) Geomicrobiology of eukaryotic microorganisms. Geomicrobiol J 27(6–7):491–519. doi:10.1080/01490451003703006

    Article  Google Scholar 

  • Gentina JC, Acevedo F (2013) Application of bioleaching to copper mining in Chile. Electron J Biotechnol. doi:10.2225/vol16-issue3-fulltext-12

    Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13(5):229–235. doi:10.1016/j.tim.2005.03.007

    Article  Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19(1):65–76. doi:10.1080/0892701021000041078

  • Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36:112–117. doi:10.1016/j.ecoleng.2009.01.004

    Article  Google Scholar 

  • Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, McCoy TJ, Yang H (2008) Mineral evolution. Am Miner 93(11–12):1693–1720. doi:10.2138/am.2008.2955

    Article  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1983) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: polynuclear aromatic compounds, part I, chemical, environmental and experimental data, vol 32. IARC, Lyon

  • Inubushi K, Acquaye S (2004) Role of microbial biomass in biogeochemical processes in paddy soil environments. Soil Sci Plant Nutr 50(6):793–805. doi:10.1080/00380768.2004.10408539

    Article  Google Scholar 

  • Jackson TA, West MM, Leppard GG (2011) Accumulation and partitioning of heavy metals by bacterial cells and associated colloidal minerals, with alteration, neoformation, and selective adsorption of minerals by bacteria, in metal-polluted lake sediment. Geomicrobiol J 28(1):23–55. doi:10.1080/01490451003739406

    Article  Google Scholar 

  • Jenkinson IR, Biddanda BA, Turley CM, Abreu PC, Riebesell U, Smetacek VS (1991) Rheological properties of marine organic aggregates: importance for vertical flux, turbulence and microzones. Oceanol Acta 11:101–107

    Google Scholar 

  • Jiang G, Noonan MJ, Ratecliffe TJ (2006) Effects of soil matric suction on retention and percolation of Bacillus subtilis in intact soil cores. Water Air Soil Pollut 177(1–4):211–226. doi:10.1007/s11270-006-9150-x

    Article  Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74(1–3):65–76. doi:10.1016/S0167-8809(99)00030-4

    Article  Google Scholar 

  • Keykha HA, Huat BBK, Asadi A, Kawasaki S (2012) Electro-biogrouting and its challenges. Int J Electrochem Sci 7:1196–1204

    Google Scholar 

  • Knapp EP, Herman JS, Hornberger GM, Mills AL (1998) The effect of distibution of iron-oxyhydroxide grain coatings on the transport fo bacterial cells in porous media. Environ Geol 33(4):243–248

    Article  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Kutschke S, Guézennec AG, Hedrich S, Schippers A, Borg G, Kamradt A, Bodénan F (2014) Bioleaching of Kupferschiefer blackshale—a review including perspectives of the Ecometals project. Miner Eng. doi:10.1016/j.mineng.2014.09.015 (Article in)

    Google Scholar 

  • Land LE, Kolker AS, Gambrell RP (2012) Biotic and abiotic controls on sediment aggregation and consolidation: implications for geochemical fluxes and coastal restoration. Mar Environ Res 79:100–110. doi:10.1016/j.marenvres.2012.05.012

    Article  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120

    Article  Google Scholar 

  • Lee LM, Wei-Soon N, Khun TC, Siew-Ling H (2012) Bio-mediated soil improvement under various concentrations of cementation reagent. Appl Mech Mater 204–208:326–329. doi:10.4028/www.scientific.net/AMM.204-208.326

    Article  Google Scholar 

  • Lian B, Chen Y, Zhu L, Yang R (2008) Effect of microbial weathering on carbonate rocks. Earth Sci Front 15(6):90–99. doi:10.1016/S1872-5791(09)60009-9

    Article  Google Scholar 

  • Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16(3):254–260. doi:10.1016/j.copbio.2005.04.012

    Article  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  Google Scholar 

  • Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157(4):473–481. doi:10.1016/j.jbiotec.2011.11.013

    Article  Google Scholar 

  • Martinez BC, DeJong JT (2009) Bio-mediated soil improvement: load transfer mechanisms at the micro- and macro- scales. In: 2009 US-China Workshop on Ground Improvement Technologies, vol 188. ASCE GSP, pp 242–251. doi:10.1061/41025(338)26

  • Maurício A, Figueiredo C, Alves C, Pereira M (2013) Non-destructive microtomography-based imaging and measuring laboratory-induced degradation of travertine, a random heterogeneous geomaterial used in urban heritage. Environ Earth Sci 69(4):1471–1480. doi:10.1007/s12665-013-2311-5

    Article  Google Scholar 

  • Meyers SK, Deng S, Basta NT, William W, Wilber GG (2007) Long-term explosive contamination in soil: effects on soil microbial community and bioremediation. Soil Sediment Contam 16(1):61–77. doi:10.1080/15320380601077859

    Article  Google Scholar 

  • Milde K, Sand W, Wolff W, Bock E (1983) Thiobacilli of the corroded concrete walls of the Hamburg sewer system. J Gen Microbiol 129:1327–1333

    Google Scholar 

  • Mileusnić M, Mapani BS, Kamona AF, Ružičić S, Mapaure I, Chimwamurombe PM (2014) Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mine, Namibia. J Geochem Explor 144:409–420. doi:10.1016/j.gexplo.2014.01.009

    Article  Google Scholar 

  • Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233. doi:10.1061/(ASCE)1090-0241(2005)131:10(1222)

    Article  Google Scholar 

  • Montana G, Randazzo L, Sabbadini S (2014) Geomaterials in green building practices: comparative characterization of commercially available clay-based plasters. Environ Earth Sci 71(2):931–945. doi:10.1007/s12665-013-2499-4

    Article  Google Scholar 

  • Montoya B, DeJong JT, Boulanger R (2013) Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique 4:302–312. doi:10.1680/geot.SIP13.P.019

    Article  Google Scholar 

  • Morillo JA, Antizar-Ladislao B, Monteoliva-Sánchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol 82(1):25–39. doi:10.1007/s00253-008-1801-y

    Article  Google Scholar 

  • Munoz JA, Gonzblez F, Blizquez ML, Ballester A (1995) A study of the bioleaching of a Spanish uranium ore. Part I: a review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy 38:39–57

    Article  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63(3):249–257. doi:10.1007/s00253-003-1404-6

    Article  Google Scholar 

  • Paul EA (2007) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic Press, Oxford, UK

  • Perry RS, Mcloughlin N, Lynne BY, Sephton MA, Oliver JD, Perry CC, Staley JT (2007) Defining biominerals and organominerals: direct and indirect indicators of life. Sediment Geol 201(1–2):157–179. doi:10.1016/j.sedgeo.2007.05.014

    Article  Google Scholar 

  • Phadnis HS, Santamarina JC (2011) Bacteria in sediments: pore size effects. Géotech Lett 1(4):91–93. doi:10.1680/geolett.11.00008

    Article  Google Scholar 

  • Polo A, Cappitelli F, Brusetti L, Principi P, Villa F, Giacomucci L, Sorlini C (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Microb Ecol 60(1):1–14. doi:10.1007/s00248-009-9633-6

    Article  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology, 5th edn. The McGraw-Hill Company

  • Rebata-landa V, Santamarina JC (2012) Mechanical effects of biogenic nitrogen gas bubbles in soils. J Geotech Geoenviron Eng 138(2):128–137. doi:10.1061/(ASCE)GT.1943-5606.0000571

    Article  Google Scholar 

  • Robson TC, Braungardt CB, Keith-Roach MJ, Rieuwerts JS, Worsfold PJ (2013) Impact of arsenopyrite contamination on agricultural soils and crops. J Geochem Explor 125:102–109. doi:10.1016/j.gexplo.2012.11.013

    Article  Google Scholar 

  • Robson TC, Braungardt CB, Rieuwerts J, Worsfold P (2014) Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Environ Pollut 184:283–289. doi:10.1016/j.envpol.2013.09.001

    Article  Google Scholar 

  • Roeselers G, Van Loosdrecht MCM (2010) Microbial phytase-induced calcium-phosphate precipitation—a potential soil stabilization method. Folia Microbiol 55(6):621–624. doi:10.1007/s12223-010-0099-1

    Article  Google Scholar 

  • Rogers JR, Bennett PC (2004) Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol 203(1–2):91–108. doi:10.1016/j.chemgeo.2003.09.001

    Article  Google Scholar 

  • Rong H, Qian CX, Li LZ (2012) Study on microstructure and properties of sandstone cemented by microbe cement. Constr Build Mater 36:687–694. doi:10.1016/j.conbuildmat.2012.06.063

    Article  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37(17):4231–4235. doi:10.1016/S0043-1354(03)00418-4

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5):468–474. doi:10.1038/nbt0595-468

    Article  Google Scholar 

  • Sand W, Bock E (1984) Concrete corrosion in the Hamburg Sewer system. Environ Technol Lett 5(12):517–528. doi:10.1080/09593338409384307

    Article  Google Scholar 

  • Schmitt J, Flemming H-C (1998) FTIR-spectroscopy in microbial and material analysis. Int Biodeterior Biodegradation 41(1):1–11. doi:10.1016/S0964-8305(98)80002-4

    Article  Google Scholar 

  • Schwarz M, Preti F, Giadrossich F, Lehmann P, Or D (2010) Quantifying the role of vegetation in slope stability: a case study in Tuscany (Italy). Ecol Eng 36(3):285–291. doi:10.1016/j.ecoleng.2009.06.014

    Article  Google Scholar 

  • Sentenac P, Jones G, Zielinski M, Tarantino A (2013) An approach for the geophysical assessment of fissuring of estuary and river flood embankments: validation against two case studies in England and Scotland. Environ Earth Sci 69(6):1939–1949. doi:10.1007/s12665-012-2026-z

    Article  Google Scholar 

  • Sharma S, Singh DN (2014) Characterization of sediments for sustainable development: state-of-the-art. Mar Georesour Geotechnol. doi:10.1080/1064119X.2014.953232 (Article in)

    Google Scholar 

  • Sharma S, Singh DN, Phale P (2014) Soil characterization for comprehending stability of geotechnical structures. In: Oka F, Murakami A, Uzuoka R, Kimoto S (eds) Computer methods and recent advances in geomechanics. Taylor & Francis Group, London, pp 1661–1665

    Google Scholar 

  • Sivapullaiah PV (2015) Surprising soil behaviour: is it really!!! Indian Geotech J 45(1):1–24. doi:10.1007/s40098-014-0141-3

    Article  Google Scholar 

  • Soon NW, Lee LM, Khun TC, Ling HS (2013) Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE J Civil Eng 17:718–728. doi:10.1007/s12205-013-0149-8

    Article  Google Scholar 

  • Sutherland I (2001) The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227. doi:10.1016/S0966-842X(01)02012-1

    Article  Google Scholar 

  • Suzuki I (2001) Microbial leaching of metals from sulfide minerals. Biotechnol Adv 19(2):119–132. doi:10.1016/S0734-9750(01)00053-2

    Article  Google Scholar 

  • Thomé A, Reginatto C, Cecchin I, Colla LM (2014) Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J Environ Eng 140(11):1–6. doi:10.1061/(ASCE)EE.1943-7870.0000863

    Article  Google Scholar 

  • Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59(2–3):177–185. doi:10.1016/S0304-386X(00)00181-X

    Article  Google Scholar 

  • Turci F, Favero-Longo SE, Tomatis M, Martra G, Castelli D, Piervittori R, Fubini B (2007) A biomimetic approach to the chemical inactivation of chrysotile fibres by lichen metabolites. Chem A Eur J 13(14):4081–4093. doi:10.1002/chem.200600991

    Article  Google Scholar 

  • Unger IM, Kennedy AC, Muzika R-M (2009) Flooding effects on soil microbial communities. Appl Soil Ecol 42(1):1–8. doi:10.1016/j.apsoil.2009.01.007

    Article  Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387. doi:10.1016/j.tim.2009.05.004

    Article  Google Scholar 

  • Urzi C, Garcia-valles M, Vendrell M, Pernice A (1999) Biomineralization processes on rock and monument surfaces observed in field and in laboratory conditions. Geomicrobiol J 16(1):39–54. doi:10.1080/014904599270730

    Article  Google Scholar 

  • Urzì C, Lisi S, Criseo G, Pernice A (1991) Adhesion to and degradation of marble by a micrococcus strain isolated from it. Geomicrobiol J 9(2–3):81–90. doi:10.1080/01490459109385990

    Article  Google Scholar 

  • Valsami-Jones E, McLean J, McEldowney S, Hinrichs H, Pili A (1998) An experimental study of bacterially induced dissolution of K-feldspar. Miner Ogical Mag 62A:1563–1564

    Article  Google Scholar 

  • Van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36:168–175. doi:10.1016/j.ecoleng.2009.03.026

    Article  Google Scholar 

  • Van Paassen LA, Harkes MP, van Zwieten GA, van der Zon WH, van der Star WRL, van Loosdrecht MCM (2009) Scale up of BioGrout: a biological ground reinforcement method. In: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. IOS Press, Lansdale, pp 2328–2333. doi:10.3233/978-1-60750-031-5-2328

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman D (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microb Ecol 27(3):241–251

    Article  Google Scholar 

  • Vibha B, Neelam G (2012) Importance of exploration of microbial biodiversity. ISCA J Biol Sci 1(3):78–83

    Google Scholar 

  • Wakefield RD, Jones MS (1998) An introduction to stone colonizing micro-organisms and biodeterioration of building stone. J Eng Geol 31:369–373. doi:10.1144/GSL.QJEG.1998.031.P4.03

    Article  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451. doi:10.1016/j.biotechadv.2006.03.001

    Article  Google Scholar 

  • Wang J, Stabnikova O, Lee SS, Tay J (2004) Integrated chemical-biological remediation for polycyclic aromatic hydrocarbons contaminated soil. Pract Period Hazard Toxic Radioact Waste Manag 8(2):79–83

    Article  Google Scholar 

  • Wang X, Xu J, Sun C (2013) Effects of sulfate-reducing bacterial on corrosion of 403 stainless steel in soils containing chloride ions. Int J Electrochem Sci 8:821–830

    Google Scholar 

  • Warren LA, Ferris GF (1998) Continuum between sorption and precipitation of Fe(III) on microbial surfaces. Environ Sci Technol 32(15):2331–2337. doi:10.1021/es9800481

    Article  Google Scholar 

  • Weaver TJ, Burbank M, Lewis A, Lewis R, Crawford R, Williams B (2011) Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications. In: Geo-Frontiers 2011: advances in geotechnical engineering, vol 211. pp 3975–3983. doi:10.1061/41165(397)406

  • Wei-Soon N, Lee LM, Siew-Ling H (2012) An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Acad Sci Eng Technol 62:723–729

    Google Scholar 

  • Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24:417–423. doi:10.1080/01490450701436505

    Article  Google Scholar 

  • Wierzchos J, Ascaso C (1998) Mineralogical transformation of bioweathered granitic biotite, studied by hrtem: evidence for a new pathway in lichen activity. Clays Clay Miner 46(4):446–452

    Article  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81(3):229–249. doi:10.1016/0269-7491(93)90206-4

    Article  Google Scholar 

  • Wu C, Cheng Y, Ding Y, Wei F, Jin Y (2007) A novel X-ray computed tomography method for fast measurement of multiphase flow. Chem Eng Sci 62(16):4325–4335. doi:10.1016/j.ces.2007.04.026

    Article  Google Scholar 

  • Xiao B, Lian B, Shao W (2012) Do bacterial secreted proteins play a role in the weathering of potassium-bearing rock powder? Geomicrobiol J 29(6):497–505. doi:10.1080/01490451.2011.581333

    Article  Google Scholar 

  • Xu J, Sun C, Yan M, Wang F (2012) Effects of sulfate reducing bacteria on corrosion of carbon steel Q235 in soil-extract solution. Int J Electrochem Sci 7:11281–11296

    Google Scholar 

  • Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42(1–2):1–12. doi:10.1016/j.watres.2007.07.013

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Kannan K. R. Iyer, formerly research scholar, IIT Bombay and Dr. Charles W. Knapp, Department of Civil and Environmental Engineering, University of Strathclyde for assisting in interpreting the Cryo FEG-SEM micrographs. The authors also thank the Cryo FEG-SEM of IRCC Central Facility, IIT Bombay for providing their services and assistance in imaging the soil samples. The study was funded by Department of Science and Technology, Government of India (Grant No. IDP/IND/2012/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Singh.

Ethics declarations

Conflict of interest

All the authors are associated with Department of Civil Engineering, IIT Bombay. The authors declare that they have no conflict of interest.

Funding

The study was funded by Department of Science and Technology, Government of 548 India (Grant No. IDP/IND/2012/12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashank, B.S., Sharma, S., Sowmya, S. et al. State-of-the-art on geotechnical engineering perspective on bio-mediated processes. Environ Earth Sci 75, 270 (2016). https://doi.org/10.1007/s12665-015-5071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5071-6

Keywords

Navigation