Skip to main content
Log in

Synthesis of 3-Iodoindoles and Their Glucose Electrooxidation Performance as an Anode Catalyst

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Herein, indole derivatives namely 3-iodo-1-methyl-2-phenyl-1H-indole (4A), 3-iodo-1-methyl-2-(p-tolyl)-1H-indole (4B), and 2-(2,5-dimethylphenyl)-3-iodo-1-methyl-1H-indole (4C) prepared by Sonogashira coupling and electrophilic cyclization reactions with yield of 70%, 68%, and 67%, respectively. Organic catalysts were characterized by using Liquid Chromatography with tandem mass spectrometry (LC–MS–MS), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spektrofotometre (FT-IR), and Nuclear Magnetic Resonance (NMR). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) were utilized to observe the electrocatalytic behavior of 4A, 4B, and 4C. Specific activity for glucose electrooxidation of 4A was determined as 3.26 mA/cm2. Compound 4A exhibits long-term stability toward glucose electrooxidation. As a metal-free catalyst, Compound 4A may be a good candidate as an electrocatalyst for glucose electrooxidation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

Abbreviations

LC–MS/MS:

Liquid chromatography with tandem mass spectrometry

FT-IR:

Fourier transform infrared spectroscopy

NMR:

Nuclear magnetic resonance

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

CA:

Chronoamperometry

DGFC:

Direct glucose fuel cell

PdCl2(PPh3)2 :

Bis(triphenylphosphine)palladium(II) dichloride

Et3N:

Triethylamine

THF:

Tetrahydrofuran

CuI:

Copper(I) iodide

MgSO4 :

Magnesium sulfate

I2 :

Iodine

TLC:

Thin-layer chromatography

KOH:

Potassium hydroxide

RT:

Room temperature

J :

Coupling constant

δ:

Chemical shift in parts per million

CDCl3 :

Deuterochloroform

µL:

Microliter

References

  1. Yagizatli, Y., et al.: Improved fuel cell properties of Nano-TiO2 doped poly(vinylidene fluoride) and phosphonated poly(vinyl alcohol) composite blend membranes for PEM fuel cells. Int. J. Hydrogen Energy 45(60), 35130–35138 (2020)

    Article  Google Scholar 

  2. Cali, A., et al.: Highly durable phosphonated graphene oxide doped polyvinylidene fluoride (PVDF) composite membranes. Int. J. Hydrogen Energy 45(60), 35171–35179 (2020)

    Article  Google Scholar 

  3. Rusanen, A., et al.: Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst. Catal Today 357, 94–101 (2020)

    Article  Google Scholar 

  4. Maneeintr, K., et al.: Hydrothermal and enzymatic treatments of pineapple waste for energy production. Energy Procedia 152, 1260–1265 (2018)

    Article  Google Scholar 

  5. Han, B., et al.: Catalytic conversion of glucose to 5-hydroxymethyfurfural over B2O3 supported solid acids catalysts. Waste Biomass Valorization 9(11), 2181–2190 (2018)

    Article  Google Scholar 

  6. Chaudhuri, S.K., Lovley, D.R.J.N.B.: Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21(10), 1229–1232 (2003)

    Article  Google Scholar 

  7. Xing, D., et al.: Change in microbial communities in acetate-and glucose-fed microbial fuel cells in the presence of light. Biosens. Bioelectron. 25(1), 105–111 (2009)

    Article  Google Scholar 

  8. Xia, X., et al.: Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells. Appl. Microbiol. Biotechnol. 87(1), 383–390 (2010)

    Article  Google Scholar 

  9. Kuo, J., et al.: Dynamic changes in soil microbial communities with glucose enrichment in sediment microbial fuel cells. Indian J. Microbiol. 61(4), 497–505 (2021)

    Article  Google Scholar 

  10. Shao, M., et al.: Optimization of a membraneless glucose/oxygen enzymatic fuel cell based on a bioanode with high coulombic efficiency and current density. ChemPhysChem 14(10), 2260–2269 (2013)

    Article  Google Scholar 

  11. Bollella, P., et al.: A glucose/oxygen enzymatic fuel cell based on gold nanoparticles modified graphene screen-printed electrode. Proof-of-concept in human saliva. Sens. Actuat. B Chem. 256, 921–930 (2018)

    Article  Google Scholar 

  12. Sahin, O., et al.: Facile and rapid synthesis of microwave assisted Pd nanoparticles as non-enzymatic hydrogen peroxide sensor (vol 12, pg 762, 2017). Int. J. Electrochem. Sci. 13(2), 2186–2192 (2018)

    Article  Google Scholar 

  13. Bona, D., et al.: Management of digestate and exhausts from solid oxide fuel cells produced in the dry anaerobic digestion pilot plant: microalgae cultivation approach. Waste Biomass Valorization 11(12), 6499–6514 (2020)

    Article  Google Scholar 

  14. Brouzgou, A., et al.: Glucose electrooxidation over PdxRh/C electrocatalysts in alkaline medium. Appl. Catal. B 147, 481–489 (2014)

    Article  Google Scholar 

  15. Prathiba, S., Kumar, P.S., Vo, D.-V.N.J.C.: Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere 286, 131856 (2022)

    Article  Google Scholar 

  16. Liu, J., Vipulanandan, C., Yang, M.: Biosurfactant production from used vegetable oil in the anode chamber of a microbial electrosynthesizing fuel cell. Waste Biomass Valorization 10(10), 2925–2931 (2019)

    Article  Google Scholar 

  17. Sahin, O., et al.: Facile and rapid synthesis of microwave assisted Pd nanoparticles as non-enzymatic hydrogen peroxide sensor. Int. J. Electrochem. Sci. 12(1), 762–769 (2017)

    Article  Google Scholar 

  18. Huang, J., et al.: Pt-catalyzed D-glucose oxidation reactions for glucose fuel cells. J. Electrochem. Soc. 168(6), 064511 (2021)

    Article  Google Scholar 

  19. Zhu, G.D., et al.: Use of lignosulfonate from pulping industrial waste as a potential material for proton exchange membrane in fuel cells. Waste Biomass Valorization 13(6), 2861–2869 (2022)

    Article  Google Scholar 

  20. Chen, J., et al.: An alkaline direct oxidation glucose fuel cell using three-dimensional structural Au/Ni-foam as catalytic electrodes. RSC Adv. 7(5), 3035–3042 (2017)

    Article  Google Scholar 

  21. Pak, M., et al.: Nickel-gold bimetallic nanostructures with the improved electrochemical performance for non-enzymatic glucose determination. J. Electroanal. Chem. 900, 115729 (2021)

    Article  Google Scholar 

  22. Hansu, T., et al.: Fabrication of novel palladium-platinum based graphene/ITO electrodes and third metal addition effect through the glucose electrooxidation. J. Electroanal. Chem. 918, 116505 (2022)

    Article  Google Scholar 

  23. Carbas, B.B., et al.: Synthesis and electropolymerization of a new ion sensitive ethylenedioxy-substituted terthiophene monomer bearing a quinoxaline moiety. J. Electroanal. Chem. 677, 9–14 (2012)

    Article  Google Scholar 

  24. Chai, D., et al.: Facile aqueous phase synthesis of Pd3Cu–B/C catalyst for enhanced glucose electrooxidation. J. Taiwan Inst. Chem. Eng. 95, 139–146 (2019)

    Article  Google Scholar 

  25. Mello, G.A., et al.: Glucose electro-oxidation on Pt (100) in phosphate buffer solution (pH 7): A mechanistic study. Electrochim. Acta 354, 136765 (2020)

    Article  Google Scholar 

  26. Xu, M., et al.: One-pot aqueous synthesis of icosahedral Au as bifunctional candidates for enhanced glucose electrooxidation and surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 12(10), 12186–12194 (2020)

    Article  Google Scholar 

  27. Brouzgou, A., et al.: Glucose electrooxidation reaction in presence of dopamine and uric acid over ketjenblack carbon supported PdCo electrocatalyst. J. Electroanal. Chem. 855, 113610 (2019)

    Article  Google Scholar 

  28. Eshghi, A., Kheirmand, M.J.S.E.: Electroplating of Pt–Ni–Cu nanoparticles on glassy carbon electrode for glucose electro-oxidation process. Surf. Eng. 35(2), 128–134 (2019)

    Article  Google Scholar 

  29. Zhiani, M., Abedini, A., Majidi, S.J.E.: Comparison of electro-catalytic activity of Fe-Ni-Co/C and Pd/C nanoparticles for glucose electro-oxidation in alkaline half-cell and direct glucose fuel cell. Electrocatalysis 9(6), 735–743 (2018)

    Article  Google Scholar 

  30. Rafaïdeen, T., Baranton, S., Coutanceau, C.J.F.I.C.: Pd-shaped nanoparticles modified by gold ad-atoms: effects on surface structure and activity toward glucose electrooxidation. Front. Chem. 7, 453 (2019)

    Article  Google Scholar 

  31. Er, Ö.F., Ulaş, B., Kivrak, H.D.J.T.J.O.C.: Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. Turk. J. Chem. 45(4), 1173–1188 (2021)

    Article  Google Scholar 

  32. Abuzaied, M.M., et al.: Enhanced glucose electrooxidation at Ni–Cu binary oxide nanocatalyst. Int. J. Electrochem. Sci. 15(3), 2449–2457 (2020)

    Article  Google Scholar 

  33. Er, O.F., et al.: Enhanced electrochemical glucose oxidation in alkaline solution over indium decorated carbon supported palladium nanoparticles. Mater. Chem. Phys. 254, 123318 (2020)

    Article  Google Scholar 

  34. Escalona-Villalpando, R., et al.: Electrodeposition of gold on oxidized and reduced graphite surfaces and its influence on glucose oxidation. J. Electroanal. Chem. 816, 92–98 (2018)

    Article  Google Scholar 

  35. Caglar, A., et al.: Fabrication of carbon-doped titanium dioxide nanotubes as anode materials for photocatalytic glucose fuel cells. J. Electron. Mater. 50(4), 2242–2253 (2021)

    Article  Google Scholar 

  36. Ozok-Arici, O., et al.: Glucose electrooxidation study on 3-iodo-2-(aryl/alkyl)benzo[b]thiophene organic catalyst. J. Electron. Mater. 51, 1653–1662 (2022)

    Article  Google Scholar 

  37. Algso, M.A.S., et al.: Synthesis and biological evaluation of novel benzothiophene derivatives. J. Chem. Sci. (2018). https://doi.org/10.1007/s12039-018-1523-3

    Article  Google Scholar 

  38. Hamad, A.R., et al.: Indole-based novel organic anode catalyst for glucose electrooxidation. Int. J. Energy Res. 46(2), 1659–1671 (2022)

    Article  Google Scholar 

  39. Ozok, O., et al.: Novel benzothiophene based catalyst with enhanced activity for glucose electrooxidation. Int. J. Hydrogen Energy 45(53), 28706–28715 (2020)

    Article  Google Scholar 

  40. Brouzgou, A., Tsiakaras, P.: Electrocatalysts for glucose electrooxidation reaction: a review. Top. Catal. 58(18), 1311–1327 (2015)

    Article  Google Scholar 

  41. Kaya, S., et al.: Highly active RuPd bimetallic catalysts for sodium borohydride electrooxidation and hydrolysis. J. Electron. Mater. 51(1), 403–411 (2022)

    Article  MathSciNet  Google Scholar 

  42. Cao, M., et al.: Nickel-copper oxide nanoflowers for highly efficient glucose electrooxidation. Int. J. Hydrogen Energy 46(56), 28527–28536 (2021)

    Article  Google Scholar 

  43. Neha, N., et al.: Remarkably efficient carbon-supported nanostructured platinum-bismuth catalysts for the selective electrooxidation of glucose and methyl-glucoside. Electrocatalysis 12(1), 1–14 (2021)

    Article  Google Scholar 

  44. Er, O.F., Kivrak, H.J.E.S.: Highly active carbon nanotube supported iridium, copper, ruthenium catalysts for glucose electrooxidation. Energy Storage 3(6), e271 (2021)

    Article  Google Scholar 

  45. Neto, N.F.A., et al.: Evaluation of ITO/TiO2/Co3O4 as a non-enzymatic heterojunction electrode to glucose electrooxidation. Ionics 27(4), 1597–1609 (2021)

    Article  Google Scholar 

  46. Ulas, B., et al.: Disentangling the enhanced catalytic activity on Ga modified Ru surfaces for sodium borohydride electrooxidation. Surf. Interfaces 23, 100999 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge with gratitude the support provided by the TUBİTAK (120Z928) for chemicals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hilal Kivrak or Arif Kivrak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8279 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calis, H., Ulas, B., Yilmaz, Y. et al. Synthesis of 3-Iodoindoles and Their Glucose Electrooxidation Performance as an Anode Catalyst. Waste Biomass Valor 14, 3285–3295 (2023). https://doi.org/10.1007/s12649-023-02163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02163-y

Keywords

Navigation