Skip to main content
Log in

Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Fish processing industry has experienced significant growth, playing an important role in the world economy. The increased exploration of marine resources contributes to the generation of considerable amounts of biowaste, which ends up as discards. In the face of the resultant disposal and environmental problems, many efforts have been made to deal with the fishery waste in more efficient ways. Nowadays, these by-products are regarded as important sources of high added value compounds, such as hydroxyapatite, collagen, gelatin, lipids, enzymes, hydrolysates and bioactive peptides, with great potential for human health applications. The present paper aims to review the current methods of extraction and characterization of added value products from fish by-products, as well as their actual and potential applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Is an obsolete term (IUPAC, 1997 “imino acids,”). In this review we will save the imino acid designation, for standardizing purposes.

References

  1. FAO: The State of World Fisheries and Aquaculture—Opportunities and Challenges. FAO, Rome (2014)

    Google Scholar 

  2. Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R., Jyothirmayi, T.: Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 135, 3020–3038 (2012). https://doi.org/10.1016/j.foodchem.2012.06.100

    Article  Google Scholar 

  3. Caruso, G.: Fishery wastes and by-products: a resource to be valorised. J. Fish. Sci. 9, 080–083 (2015)

    Google Scholar 

  4. Ferraro, V., Cruz, I.B., Jorge, R.F., Malcata, F.X., Pintado, M.E., Castro, P.M.L.: Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res. Int. 43, 2221–2233 (2010). https://doi.org/10.1016/j.foodres.2010.07.034

    Article  Google Scholar 

  5. Hsu, K.-C.: Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem. 122, 42–48 (2010). https://doi.org/10.1016/J.FOODCHEM.2010.02.013

    Article  Google Scholar 

  6. Schmidt, Dornelles, R.C.P., Mello, R.O., Kubota, E.H., Mazutti, M.A., Kempka, Demiate, I.M.: Collagen extraction process. Int. Food Res. J. 23, 913–922 (2016)

    Google Scholar 

  7. Liceaga-Gesualdo, A., Li-Chan, E.C.: Functional properties of fish protein hydrolysate from herring (Clupea harengus). J. Food Sci. 64, 1000–1004 (1999)

    Article  Google Scholar 

  8. Chantachum, S., Benjakul, S., Sriwirat, N.: Separation and quality of fish oil from precooked and non-precooked tuna heads. Food Chem. 69, 289–294 (2000). https://doi.org/10.1016/S0308-8146(99)00266-6

    Article  Google Scholar 

  9. Montero, P., Gomez-Guillen, M.C.: Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect functional properties of the resulting gelatin. J. Food Sci. 65, 434–438 (2000). https://doi.org/10.1111/j.1365-2621.2000.tb16022.x

    Article  Google Scholar 

  10. Ozawa, M., Suzuki, S.: Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment. J. Argent. Chem. Soc. 17, 2000–2002 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00268.x

    Article  Google Scholar 

  11. Kim, S.-K., Park, P.-J., Kim, J.-B., Shahidi, F.: Purification and characterization of a collagenolytic protease from the filefish, Novoden modestrus. J. Biochem. Mol. Biol. 35, 165–171 (2002)

    Google Scholar 

  12. Kim, S.K., Mendis, E.: Bioactive compounds from marine processing byproducts—a review. Food Res. Int. 39, 383–393 (2006). https://doi.org/10.1016/j.foodres.2005.10.010

    Article  Google Scholar 

  13. Gildberg, A.: Enzymes and bioactive peptides from fish waste related to fish silage, fish Feed and fish Sauce production. J. Aquat. Food Prod. Technol. 13, 3–11 (2004). https://doi.org/10.1300/J030v13n02

    Article  Google Scholar 

  14. Gildberg, A., Simpson, B.K., Haard, N.F.: Uses of enzymes from marine organisms. In: Haard, N.F., Simpson, B.K. (eds.) Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality, pp. 619–639. Marcel Dekker Inc, New York (2000)

    Google Scholar 

  15. Gildberg, A.: Digestive enzyme activities in starved pre-slaughter farmed and wild-captured, Atlantic cod (Gadus morhua). Aquaculture 238, 343–353 (2004). https://doi.org/10.1016/j.aquaculture.2004.03.021

    Article  Google Scholar 

  16. Zhao, L., Budge, S.M., Ghaly, A.E., Brooks, S.M.: Extraction, purification and characterization of fish pepsin: a critical review. J. Food Process. Technol. (2011). https://doi.org/10.4172/2157-7110.1000126

    Article  Google Scholar 

  17. Fernandes, P.: Enzymes in fish and seafood processing. Front. Bioeng. Biotechnol. 4, 1–14 (2016). https://doi.org/10.3389/fbioe.2016.00059

    Article  Google Scholar 

  18. Shahidi, F., Janak Kamil, Y.V.A.: Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci. Technol. 12, 435–464 (2001). https://doi.org/10.1016/s0924-2244(02)00021-3

    Article  Google Scholar 

  19. Souza, A.A.G., Amaral, I.P.G., Santo, A.R.E., Carvalho, L.B., Bezerra, R.S.: Trypsin-like enzyme from intestine and pyloric caeca of spotted goatfish (Pseudupeneus maculatus). Food Chem. 100, 1429–1434 (2007). https://doi.org/10.1016/j.foodchem.2005.12.016

    Article  Google Scholar 

  20. Silva, J.F., Espósito, T.S., Marcuschi, M., Ribeiro, K., Cavalli, R.O., Oliveira, V., Bezerra, R.S.: Purification and partial characterisation of a trypsin from the processing waste of the silver mojarra (Diapterus rhombeus). Food Chem. 129, 777–782 (2011). https://doi.org/10.1016/j.foodchem.2011.05.019

    Article  Google Scholar 

  21. Bougatef, A., Souissi, N., Fakhfakh, N., Ellouz-Triki, Y., Nasri, M.: Purification and characterization of trypsin from the viscera of sardine (Sardina pilchardus). Food Chem. 102, 343–350 (2007). https://doi.org/10.1016/j.foodchem.2006.05.050

    Article  Google Scholar 

  22. Marcuschi, M., Espósito, T.S., Machado, M.F.M., Hirata, I.Y., Machado, M.F.M., Silva, M.V., Carvalho, L.B., Oliveira, V., Bezerra, R.S.: Purification, characterization and substrate specificity of a trypsin from the Amazonian fish tambaqui (Colossoma macropomum). Biochem. Biophys. Res. Commun. 396, 667–673 (2010). https://doi.org/10.1016/j.bbrc.2010.04.155

    Article  Google Scholar 

  23. Khantaphant, S., Benjakul, S.: Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chem. 120, 658–664 (2010). https://doi.org/10.1016/j.foodchem.2009.09.098

    Article  Google Scholar 

  24. Fuchise, T., Kishimura, H., Sekizaki, H., Nonami, Y., Kanno, G., Klomklao, S., Benjakul, S., Chun, B.S.: Purification and characteristics of trypsins from cold-zone fish, Pacific cod (Gadus macrocephalus) and saffron cod (Eleginus gracilis). Food Chem. 116, 611–616 (2009). https://doi.org/10.1016/j.foodchem.2009.02.078

    Article  Google Scholar 

  25. Lu, B.J., Zhou, L.G., Cai, Q.F., Hara, K., Maeda, A., Su, W.J., Cao, M.J.: Purification and characterisation of trypsins from the pyloric caeca of mandarin fish (Siniperca chuatsi). Food Chem. 110, 352–360 (2008). https://doi.org/10.1016/j.foodchem.2008.02.010

    Article  Google Scholar 

  26. Nalinanon, S., Benjakul, S., Visessanguan, W., Kishimura, H.: Partitioning of protease from stomach of albacore tuna (Thunnus alalunga) by aqueous two-phase systems. Process Biochem. 44, 471–476 (2009). https://doi.org/10.1016/j.procbio.2008.12.018

    Article  Google Scholar 

  27. Spelzini, D., Farruggia, B., Picó, G.: Features of the acid protease partition in aqueous two-phase systems of polyethylene glycol–phosphate: chymosin and pepsin. J. Chromatogr. B 821, 60–66 (2005). https://doi.org/10.1016/J.JCHROMB.2005.04.007

    Article  Google Scholar 

  28. Tubío, G., Nerli, B., Picó, G.: Partitioning features of bovine trypsin and α-chymotrypsin in polyethyleneglycol-sodium citrate aqueous two-phase systems. J. Chromatogr. B 852, 244–249 (2007). https://doi.org/10.1016/J.JCHROMB.2007.01.025

    Article  Google Scholar 

  29. Merz, M., Claaßen, W., Appel, D., Berends, P., Rabe, S., Blank, I., Stressler, T., Fischer, L.: Characterization of commercially available peptidases in respect of the production of protein hydrolysates with defined compositions using a three-step methodology. J. Mol. Catal. B Enzym. 127, 1–10 (2016)

    Article  Google Scholar 

  30. Cao, M.J., Chen, W.Q., Du, C.H., Yoshida, A., Lan, W.G., Liu, G.M., Su, W.J.: Pepsinogens and pepsins from Japanese seabass (Lateolabrax japonicus). Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 158, 259–265 (2011). https://doi.org/10.1016/j.cbpb.2010.12.003

    Article  Google Scholar 

  31. Klomklao, S., Kishimura, H., Yabe, M., Benjakul, S.: Purification and characterization of two pepsins from the stomach of pectoral rattail (Coryphaenoides pectoralis). Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 147, 682–689 (2007). https://doi.org/10.1016/j.cbpb.2007.04.008

    Article  Google Scholar 

  32. Nalinanon, S., Benjakul, S., Kishimura, H.: Biochemical properties of pepsinogen and pepsin from the stomach of albacore tuna (Thunnus alalunga). Food Chem. 121, 49–55 (2010). https://doi.org/10.1016/J.FOODCHEM.2009.11.089

    Article  Google Scholar 

  33. Tanji, M., Yakabe, E., Kageyama, T., Yokobori, S.I., Ichinose, M., Miki, K., Ito, H., Takahashi, K.: Purification and characterization of pepsinogens from the gastric mucosa of African coelacanth, Latimeria chalumnae, and properties of the major pepsins. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 146, 412–420 (2007). https://doi.org/10.1016/j.cbpb.2006.11.025

    Article  Google Scholar 

  34. Wu, T., Sun, L.C., Du, C.H., Cai, Q.F., Zhang, Q.B., Su, W.J., Cao, M.J.: Identification of pepsinogens and pepsins from the stomach of European eel (Anguilla anguilla). Food Chem. 115, 137–142 (2009). https://doi.org/10.1016/j.foodchem.2008.11.077

    Article  Google Scholar 

  35. Zhou, Q., Liu, G.M., Huang, Y.Y., Weng, L., Hara, K., Su, W.J., Cao, M.J.: Pepsinogens and pepsins from mandarin fish (Siniperca chuatsi). J. Agric. Food Chem. 56, 5401–5406 (2008). https://doi.org/10.1021/jf800458n

    Article  Google Scholar 

  36. Candiotto, F.B., Freitas-Júnior, A.C.V., Neri, R.C.A., Bezerra, R.S., Rodrigues, R.V., Sampaio, L.A., Tesser, M.B.: Characterization of digestive enzymes from captive Brazilian flounder Paralichthys orbignyanus. Braz. J. Biol. 78, 281–288 (2017)

    Article  Google Scholar 

  37. Kishimura, H., Klomklao, S., Benjakul, S., Chun, B.S.: Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chem. 106, 194–199 (2008). https://doi.org/10.1016/j.foodchem.2007.05.056

    Article  Google Scholar 

  38. Klomklao, S., Kishimura, H., Nonami, Y., Benjakul, S.: Biochemical properties of two isoforms of trypsin purified from the Intestine of skipjack tuna (Katsuwonus pelamis). Food Chem. 115, 155–162 (2009). https://doi.org/10.1016/j.foodchem.2008.11.087

    Article  Google Scholar 

  39. Gildberg, A.: Utilisation of male Arctic capelin and Atlantic cod intestines for fish sauce production—evaluation of fermentation conditions. Bioresour. Technol. 76, 119–123 (2001). https://doi.org/10.1016/S0960-8524(00)00095-X

    Article  Google Scholar 

  40. Bougatef, A., Balti, R., Zaied, S.B., Souissi, N., Nasri, M.: Pepsinogen and pepsin from the stomach of smooth hound (Mustelus mustelus): purification, characterization and amino acid terminal sequences. Food Chem. 107, 777–784 (2008). https://doi.org/10.1016/j.foodchem.2007.08.077

    Article  Google Scholar 

  41. El-Beltagy, A., El-Adawy, T., Rahma, E., El-Bedawey, A.: Purification and characterization of an acidic protease from the viscera of bolti fish (Tilapia nilotica). Food Chem. 86, 33–39 (2004). https://doi.org/10.1016/J.FOODCHEM.2003.08.009

    Article  Google Scholar 

  42. Castillo-Yañez, F.J., Pacheco-Aguilar, R., Garcia-Carreño, F.L., Navarrete-Del Toro, M.D.L.A.: Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem. 85, 343–350 (2004). https://doi.org/10.1016/j.foodchem.2003.07.008

    Article  Google Scholar 

  43. Castillo-Yáñez, F.J., Pacheco-Aguilar, R., García-Carreño, F.L., Navarrete-Del Toro, M.D.L.Á.: Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 140, 91–98 (2005). https://doi.org/10.1016/j.cbpc.2004.09.031

    Article  Google Scholar 

  44. Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., Liao, B., He, H., Li, H.: Overview of antioxidant peptides derived from marine resources: the sources, characteristic, purification, and evaluation methods. Appl. Biochem. Biotechnol. 176, 1815–1833 (2015). https://doi.org/10.1007/s12010-015-1689-9

    Article  Google Scholar 

  45. Guérard, F., Dufossé, L., De La Broise, D., Binet, A.: Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J. Mol. Catal. B Enzym. 11, 1051–1059 (2001). https://doi.org/10.1016/S1381-1177(00)00031-X

    Article  Google Scholar 

  46. Šližytė, R., Daukšas, E., Falch, E., Storrø, I., Rustad, T.: Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products. Process Biochem. 40, 2021–2033 (2005). https://doi.org/10.1016/j.procbio.2004.07.016

    Article  Google Scholar 

  47. Vázquez, J., Blanco, M., Massa, A., Amado, I., Pérez-Martín, R.: Production of fish protein hydrolysates from Scyliorhinus canicula discards with antihypertensive and antioxidant activities by enzymatic hydrolysis and mathematical optimization using response surface methodology. Mar. Drugs 15, 306 (2017). https://doi.org/10.3390/md15100306

    Article  Google Scholar 

  48. Himonides, A.T., Taylor, A.K.D., Morris, A.J.: A study of the enzymatic hydrolysis of fish frames using model systems. Food Nutr. Sci. 2, 575–585 (2011). https://doi.org/10.4236/fns.2011.26081

    Article  Google Scholar 

  49. Bhaskar, N., Benila, T., Radha, C., Lalitha, R.G.: Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour. Technol. 99, 335–343 (2008). https://doi.org/10.1016/j.biortech.2006.12.015

    Article  Google Scholar 

  50. Wang, W., Li, Z., Liu, J., Wang, Y., Liu, S., Sun, M.: Comparison between thermal hydrolysis and enzymatic proteolysis processes for the preparation of tilapia skin. Czech J. Food Sci. 31, 1–4 (2013)

    Article  Google Scholar 

  51. Murthy, P.S., Rai, A.K., Bhaskar, N.: Fermentative recovery of lipids and proteins from freshwater fish head waste with reference to antimicrobial and antioxidant properties of protein hydrolysate. J. Food Sci. Technol. 51, 1884–1892 (2014). https://doi.org/10.1007/s13197-012-0730-z

    Article  Google Scholar 

  52. Villamil, O., Váquiro, H., Solanilla, J.F.: Fish viscera protein hydrolysates: production, potential applications and functional and bioactive properties. Food Chem. 224, 160–171 (2017). https://doi.org/10.1016/j.foodchem.2016.12.057

    Article  Google Scholar 

  53. Najafian, L., Babji, A.S.S.: A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides 33, 178–185 (2012). https://doi.org/10.1016/j.peptides.2011.11.013

    Article  Google Scholar 

  54. Wang, X., Yu, H., Xing, R., Li, P.: Characterization, preparation, and purification of marine bioactive peptides. Biomed. Res. Int. 2017, 1–16 (2017). https://doi.org/10.1155/2017/9746720

    Article  Google Scholar 

  55. Ishak, N.H., Sarbon, N.M.: A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioprocess Technol. 11, 2–16 (2018). https://doi.org/10.1007/s11947-017-1940-1

    Article  Google Scholar 

  56. Klompong, V., Benjakul, S., Kantachote, D., Shahidi, F.: Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102, 1317–1327 (2007). https://doi.org/10.1016/J.FOODCHEM.2006.07.016

    Article  Google Scholar 

  57. Elavarasan, K., Naveen Kumar, V., Shamasundar, B.A.: Antioxidant and functional properties of fish protein hydrolysates from fresh water Carp (Catla catla) as influenced by the nature of enzyme. J. Food Process. Preserv. 38, 1207–1214 (2014). https://doi.org/10.1111/jfpp.12081

    Article  Google Scholar 

  58. Ben Khaled, H., Ktari, N., Ghorbel-Bellaaj, O., Jridi, M., Lassoued, I., Nasri, M.: Composition, functional properties and in vitro antioxidant activity of protein hydrolysates prepared from sardinelle (Sardinella aurita) muscle. J. Food Sci. Technol. 51, 622–633 (2014). https://doi.org/10.1007/s13197-011-0544-4

    Article  Google Scholar 

  59. Jamil, N.H., Halim, N.R.A., Sarbon, N.M.: Optimization of enzymatic hydrolysis condition and functional properties of eel (Monopterus sp.) protein using response surface methodology (RSM). Int. Food Res. J. 23, 1–9 (2016)

    Google Scholar 

  60. Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R.B.S.-B., Mehiri, M., Hajji, M., Nasri, M.: Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochem. 49, 963–972 (2014). https://doi.org/10.1016/j.procbio.2014.03.004

    Article  Google Scholar 

  61. Ktari, N., Jridi, M., Bkhairia, I., Sayari, N., Ben Salah, R., Nasri, M.: Functionalities and antioxidant properties of protein hydrolysates from muscle of zebra blenny (Salaria basilisca) obtained with different crude protease extracts. Food Res. Int. 49, 747–756 (2012). https://doi.org/10.1016/J.FOODRES.2012.09.024

    Article  Google Scholar 

  62. Liu, Y., Li, X., Chen, Z., Yu, J., Wang, F., Wang, J.: Characterization of structural and functional properties of fish protein hydrolysates from surimi processing by-products. Food Chem. 151, 459–465 (2014). https://doi.org/10.1016/J.FOODCHEM.2013.11.089

    Article  Google Scholar 

  63. Taheri, A., Anvar, S.A.A., Ahari, H., Fogliano, V.: Comparison the functional properties of protein hydrolysates from poultry byproducts and rainbow trout. Iran. J. Fish. Sci. 12, 154–169 (2013)

    Google Scholar 

  64. Tanuja, S., Viji, P., Zynudheen, A., Joshy, C.: Composition, functional properties and antioxidative activity of hydrolysates prepared from the frame meat of Striped catfish (Pangasianodon hypophthalmus). Egypt. J. Biol. 14, 27–35 (2012). https://doi.org/10.4314/ejb.v14i1.3

    Article  Google Scholar 

  65. Batista, I., Pires, C.: Utilization of Fish Waste Chapter 3: Functional Properties of Fish Protein Hydrolysates, pp. 59–75. CRC Press, Boca Raton (2013)

    Google Scholar 

  66. Kristinsson, H.G., Rasco, B.A.: Fish protein hydrolysates: production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 40, 43–81 (2000). https://doi.org/10.1080/10408690091189266

    Article  Google Scholar 

  67. Zayas, J.F.: Functionality of Proteins in Food Chapter 4: Oil and Fat Binding Properties of Proteins, pp. 228–259. Springer, Berlin (1997)

    Book  Google Scholar 

  68. Kaur, M., Singh, N.: Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chem. 102, 366–374 (2007). https://doi.org/10.1016/j.foodchem.2006.05.029

    Article  Google Scholar 

  69. Halim, N.R.A.R.A., Yusof, H.M.M., Sarbon, N.M.M.: Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci. Technol. 51, 24–33 (2016). https://doi.org/10.1016/j.tifs.2016.02.007

    Article  Google Scholar 

  70. Cheng, X., Tang, X., Wang, Q., Mao, X.Y.: Antibacterial effect and hydrophobicity of yak κ-casein hydrolysate and its fractions. Int. Dairy J. 31, 111–116 (2013). https://doi.org/10.1016/J.IDAIRYJ.2012.12.004

    Article  Google Scholar 

  71. Venkatesan, J., Anil, S., Kim, S.-K., Shim, M.: Marine fish proteins and peptides for cosmeceuticals: a review. Mar. Drugs 15, 143 (2017). https://doi.org/10.3390/md15050143

    Article  Google Scholar 

  72. Silva, T.H., Moreira-Silva, J., Marques, A.L.P., Domingues, A., Bayon, Y., Reis, R.L.: Marine origin collagens and its potential applications. Mar. Drugs 12, 5881–5901 (2014). https://doi.org/10.3390/md12125881

    Article  Google Scholar 

  73. Gómez-Guillén, M.C., Giménez, B., López-Caballero, M.E., Montero, M.P.: Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll. 25, 1813–1827 (2011). https://doi.org/10.1016/j.foodhyd.2011.02.007

    Article  Google Scholar 

  74. Karim, A.A., Bhat, R.: Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 23, 563–576 (2009). https://doi.org/10.1016/J.FOODHYD.2008.07.002

    Article  Google Scholar 

  75. Karayannakidis, P.D., Zotos, A.: Fish processing by-products as a potential source of gelatin: a review. J. Aquat. Food Prod. Technol. 25, 65–92 (2016). https://doi.org/10.1080/10498850.2013.827767

    Article  Google Scholar 

  76. Alfaro, A.T., Biluca, F.C., Marquetti, C., Tonial, I.B., de Souza, N.E.: African catfish (Clarias gariepinus) skin gelatin: extraction optimization and physical–chemical properties. Food Res. Int. 65, 416–422 (2014). https://doi.org/10.1016/J.FOODRES.2014.05.070

    Article  Google Scholar 

  77. Chen, J., Li, L., Yi, R., Xu, N., Gao, R., Hong, B.: Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT—Food Sci. Technol. 66, 453–459 (2016). https://doi.org/10.1016/j.lwt.2015.10.070

    Article  Google Scholar 

  78. Chuaychan, S., Benjakul, S., Kishimura, H.: Characteristics of acid- and pepsin-soluble collagens from scale of seabass (Lates calcarifer). LWT Food Sci. Technol. 63, 71–76 (2015). https://doi.org/10.1016/J.LWT.2015.03.002

    Article  Google Scholar 

  79. Kaewdang, O., Benjakul, S., Kaewmanee, T., Kishimura, H.: Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chem. 155, 264–270 (2014). https://doi.org/10.1016/j.foodchem.2014.01.076

    Article  Google Scholar 

  80. Liu, D., Liang, L., Regenstein, J.M., Zhou, P.: Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chem. 133, 1441–1448 (2012). https://doi.org/10.1016/J.FOODCHEM.2012.02.032

    Article  Google Scholar 

  81. Mahboob, S.: Isolation and characterization of collagen from fish waste material- skin, scales and fins of Catla catla and Cirrhinus mrigala. J. Food Sci. Technol. (2014). https://doi.org/10.1007/s13197-014-1520-6

    Article  Google Scholar 

  82. Ramanathan, G., Muthukumar, T., Tirichurapalli Sivagnanam, U.: In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing. Eur. J. Pharmacol. 814, 45–55 (2017). https://doi.org/10.1016/J.EJPHAR.2017.08.003

    Article  Google Scholar 

  83. Li, Q., Mu, L., Zhang, F., Sun, Y., Chen, Q., Xie, C., Wang, H.: A novel fish collagen scaffold as dural substitute. Mater. Sci. Eng., C 80, 346–351 (2017). https://doi.org/10.1016/J.MSEC.2017.05.102

    Article  Google Scholar 

  84. Bhagwat, P.K., Dandge, P.B.: Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal. Agric. Biotechnol. 7, 234–240 (2016). https://doi.org/10.1016/J.BCAB.2016.06.010

    Article  Google Scholar 

  85. Ahmad, T., Ismail, A., Ahmad, S.A., Khalil, K.A., Kumar, Y., Adeyemi, K.D., Sazili, A.Q.: Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: a review. Food Hydrocoll. 63, 85–96 (2017). https://doi.org/10.1016/J.FOODHYD.2016.08.007

    Article  Google Scholar 

  86. Pal, G.K., Suresh, P.V.: Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Mater. Sci. Eng., C 70, 32–40 (2017). https://doi.org/10.1016/j.msec.2016.08.047

    Article  Google Scholar 

  87. Wang, J.K., Yeo, K.P., Chun, Y.Y., Tan, T.T.Y., Tan, N.S., Angeli, V., Choong, C.: Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo. Acta Biomater. 63, 246–260 (2017). https://doi.org/10.1016/J.ACTBIO.2017.09.001

    Article  Google Scholar 

  88. Gildberg, A., Arnesen, J.A., Carlehög, M.: Utilisation of cod backbone by biochemical fractionation. Process Biochem. 38, 475–480 (2002). https://doi.org/10.1016/S0032-9592(02)00103-6

    Article  Google Scholar 

  89. Regenstein, J.M., Zhou, P.: Collagen and gelatin from marine by-products. Maximising Value Mar. By-Prod. (2007). https://doi.org/10.1533/9781845692087.2.279

    Article  Google Scholar 

  90. Sinthusamran, S., Benjakul, S., Kishimura, H.: Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer). Food Chem. 138, 2435–2441 (2013). https://doi.org/10.1016/j.foodchem.2012.11.136

    Article  Google Scholar 

  91. Coelho, R.C.G., Marques, A.L.P., Oliveira, S.M., Diogo, G.S., Pirraco, R.P., Moreira-Silva, J., Xavier, J.C., Reis, R.L., Silva, T.H., Mano, J.F.: Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering. Mater. Sci. Eng., C 78, 787–795 (2017). https://doi.org/10.1016/j.msec.2017.04.122

    Article  Google Scholar 

  92. Ali, A.M.M., Kishimura, H., Benjakul, S.: Extraction efficiency and characteristics of acid and pepsin soluble collagens from the skin of golden carp (Probarbus Jullieni) as affected by ultrasonication. Process Biochem. 66, 237–244 (2018). https://doi.org/10.1016/J.PROCBIO.2018.01.003

    Article  Google Scholar 

  93. Muhammed, A., Ali, M., Kishimura, H., Benjakul, S.: Physicochemical and molecular properties of gelatin from skin of golden carp (Probarbus Jullieni) as influenced by acid pretreatment and prior-ultrasonication. Food Hydrocoll. (2018). https://doi.org/10.1016/j.foodhyd.2018.03.052

    Article  Google Scholar 

  94. Khong, N.M.H., Yusoff, F.M., Jamilah, B., Basri, M., Maznah, I., Chan, K.W., Armania, N., Nishikawa, J.: Improved collagen extraction from jellyfish (Acromitus hardenbergi) with increased physical-induced solubilization processes. Food Chem. 251, 41–50 (2018). https://doi.org/10.1016/J.FOODCHEM.2017.12.083

    Article  Google Scholar 

  95. Sila, A., Martinez-Alvarez, O., Haddar, A., Carmen Gómez-Guillén, M., Nasri, M., Montero, M.P., Bougatef, A.: Recovery, viscoelastic and functional properties of Barbel skin gelatine: investigation of anti-DPP-IV and anti-prolyl endopeptidase activities of generated gelatine polypeptides. Food Chem. 168, 478–486 (2015). https://doi.org/10.1016/j.foodchem.2014.07.086

    Article  Google Scholar 

  96. Abdelmalek, B.E., Gómez-Estaca, J., Sila, A., Martinez-Alvarez, O., Gómez-Guillén, M.C., Chaabouni-Ellouz, S., Ayadi, M.A., Bougatef, A.: Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin. LWT—Food Sci. Technol. 65, 924–931 (2016). https://doi.org/10.1016/j.lwt.2015.09.024

    Article  Google Scholar 

  97. Zhang, Y., Dutilleul, P., Li, C., Simpson, B.K.: Alcalase-assisted production of fish skin gelatin rich in high molecular weight (HMW) polypeptide chains and their characterization for film forming capacity. LWT (2018). https://doi.org/10.1016/j.lwt.2018.12.012

    Article  Google Scholar 

  98. Byler, D.M., Susi, H.: Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25, 469–487 (1986). https://doi.org/10.1002/bip.360250307

    Article  Google Scholar 

  99. Muyonga, J., Cole, C.G., Duodu, K.: Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 86, 325–332 (2004). https://doi.org/10.1016/J.FOODCHEM.2003.09.038

    Article  Google Scholar 

  100. Zhang, Q., Wang, Q., Lv, S., Lu, J., Jiang, S., Regenstein, J.M., Lin, L.: Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Biosci. 13, 41–48 (2016)

    Article  Google Scholar 

  101. Qi, P., Zhou, Y., Wang, D., He, Z., Li, Z.: A new collagen solution with high concentration and collagen native structure perfectly preserved. RSC Adv. 5, 87180–87186 (2015). https://doi.org/10.1039/C5RA14423J

    Article  Google Scholar 

  102. Júnior, Z.S.S., Botta, S.B., Ana, P.A., França, C.M., Fernandes, K.P.S., Mesquita-Ferrari, R.A., Deana, A., Bussadori, S.K.: Effect of papain-based gel on type I collagen—spectroscopy applied for microstructural analysis. Sci. Rep. 5, 11448 (2015). https://doi.org/10.1038/srep11448

    Article  Google Scholar 

  103. Díaz-Calderón, P., Flores, E., González-Muñoz, A., Pepczynska, M., Quero, F., Enrione, J.: Influence of extraction variables on the structure and physical properties of salmon gelatin. Food Hydrocoll. 71, 118–128 (2017). https://doi.org/10.1016/J.FOODHYD.2017.05.004

    Article  Google Scholar 

  104. Sun, L., Hou, H., Li, B., Zhang, Y.: Characterization of acid- and pepsin-soluble collagen extracted from the skin of Nile tilapia (Oreochromis niloticus). Int. J. Biol. Macromol. 99, 8–14 (2017). https://doi.org/10.1016/J.IJBIOMAC.2017.02.057

    Article  Google Scholar 

  105. Feng, Y., Melacini, G., Taulane, J.P., Goodman, M.: Acetyl-terminated and template-assembled collagen-based polypeptides composed of Gly-Pro-Hyp sequences. 2. Synthesis and conformational analysis by circular dichroism, ultraviolet absorbance, and optical rotation. J. Am. Chem. Soc. 118, 10351–10358 (1996). https://doi.org/10.1021/ja961260c

    Article  Google Scholar 

  106. Kozlowska, J., Sionkowska, A., Skopinska-Wisniewska, J., Piechowicz, K.: Northern pike (Esox lucius) collagen: extraction, characterization and potential application. Int. J. Biol. Macromol. 81, 220–227 (2015). https://doi.org/10.1016/j.ijbiomac.2015.08.002

    Article  Google Scholar 

  107. Li, J., Wang, M., Qiao, Y., Tian, Y., Liu, J., Qin, S., Wu, W.: Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochem. 74, 156–163 (2018). https://doi.org/10.1016/J.PROCBIO.2018.07.009

    Article  Google Scholar 

  108. da Silva, E.V.C., Lourenço, L.D.F.H., Pena, R.S.: Optimization and characterization of gelatin from kumakuma (Brachyplatystoma filamentosum) skin. CyTA—J. Food. 15, 361–368 (2017). https://doi.org/10.1080/19476337.2016.1266391

    Article  Google Scholar 

  109. Dorozhkin, V.S.: Bioceramics of calcium orthophosphates. Biomaterials 31, 1465–1485 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.050

    Article  Google Scholar 

  110. Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., León, B.: Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng., C 32, 478–486 (2012). https://doi.org/10.1016/j.msec.2011.11.021

    Article  Google Scholar 

  111. Goto, T., Sasaki, K.: Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination. Ceram. Int. 40, 10777–10785 (2014). https://doi.org/10.1016/j.ceramint.2014.03.067

    Article  Google Scholar 

  112. Huang, Y.C., Hsiao, P.C., Chai, H.J.: Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells. Ceram. Int. 37, 1825–1831 (2011). https://doi.org/10.1016/j.ceramint.2011.01.018

    Article  Google Scholar 

  113. Venkatesan, J., Kim, S.K.: Effect of temperature on isolation and characterization of hydroxyapatite from tuna (Thunnus obesus) bone. Materials 3, 4761–4772 (2010). https://doi.org/10.3390/ma3104761

    Article  Google Scholar 

  114. Piccirillo, C., Pullar, R.C., Tobaldi, D.M., Castro, L.P.M., Pintado, E.M.M.: Hydroxyapatite and chloroapatite derived from sardine by-products. Ceram. Int. 40, 13231–13240 (2014). https://doi.org/10.1016/j.ceramint.2014.05.030

    Article  Google Scholar 

  115. Prabakaran, K., Rajeswari, S.: Development of hydroxyapatite from natural fish bone through heat treatment. Trends Biomater. Artif. Organs 20, 20–23 (2006)

    Google Scholar 

  116. Sunil, B.R., Jagannatham, M.: Producing hydroxyapatite from fish bones by heat treatment. Mater. Lett. 185, 411–414 (2016). https://doi.org/10.1016/j.matlet.2016.09.039

    Article  Google Scholar 

  117. Venkatesan, J., Qian, Z.J., Ryu, B., Thomas, N.V., Kim, S.K.: A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed. Mater. 6, 035003 (2011). https://doi.org/10.1088/1748-6041/6/3/035003

    Article  Google Scholar 

  118. Mondal, S., Mahata, S., Kundu, S., Mondal, B.: Processing of natural resourced hydroxyapatite ceramics from fish scale. Adv. Appl. Ceram. 109, 234–239 (2010). https://doi.org/10.1179/174367613X13789812714425

    Article  Google Scholar 

  119. Venkatesan, J., Lowe, B., Manivasagan, P., Kang, K.H., Chalisserry, E.P., Anil, S., Kim, D.G., Kim, S.K.: Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials 8, 5426–5439 (2015). https://doi.org/10.3390/ma8085253

    Article  Google Scholar 

  120. Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J., Krishnamra, N., Tang, I.M.: Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Mater. Sci. Eng., C 62, 183–189 (2016). https://doi.org/10.1016/j.msec.2016.01.051

    Article  Google Scholar 

  121. Muhammad, N., Gao, Y., Iqbal, F., Ahmad, P., Ge, R., Nishan, U., Rahim, A., Gonfa, G., Ullah, Z.: Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment. Sep. Purif. Technol. 161, 129–135 (2016). https://doi.org/10.1016/j.seppur.2016.01.047

    Article  Google Scholar 

  122. Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., Chanthai, S.: Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution. Chem. Eng. J. 215–216, 522–532 (2013). https://doi.org/10.1016/j.cej.2012.11.054

    Article  Google Scholar 

  123. Mondal, S., Mondal, B., Dey, A., Mukhopadhyay, S.S.: Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes. J. Miner. Mater. Charact. Eng. 11, 55–67 (2012). https://doi.org/10.4236/jmmce.2012.111005

    Article  Google Scholar 

  124. Panda, N.N., Pramanik, K., Sukla, L.B.: Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess Biosyst. Eng. 37, 433–440 (2014). https://doi.org/10.1007/s00449-013-1009-0

    Article  Google Scholar 

  125. Haider, A., Haider, S., Han, S.S., Kang, I.K.: Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv. 7, 7442–7458 (2017)

    Article  Google Scholar 

  126. Adeoti, I.A., Hawboldt, K.: A review of lipid extraction from fish processing by-product for use as a biofuel. Biomass Bioenergy 63, 330–340 (2014). https://doi.org/10.1016/j.biombioe.2014.02.011

    Article  Google Scholar 

  127. Rubio-Rodríguez, N., Beltrán, S., Jaime, I., de Diego, S.M., Sanz, M.T., Carballido, J.R.: Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov. Food Sci. Emerg. Technol. 11, 1–12 (2010). https://doi.org/10.1016/j.ifset.2009.10.006

    Article  Google Scholar 

  128. Khoddami, A.: Quality and fatty acid profile of the oil extracted from fish waste (head, intestine and liver) (Euthynnus affinis). Afr. J. Biotechnol. (2012). https://doi.org/10.5897/ajb10.1699

    Article  Google Scholar 

  129. Rodríguez, C., Acosta, C., Badía, P., Cejas, J.R., Santamaría, F.J., Lorenzo, A.: Assessment of lipid and essential fatty acids requirements of black seabream (Spondyliosoma cantharus) by comparison of lipid composition in muscle and liver of wild and captive adult fish. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 139, 619–629 (2004)

    Article  Google Scholar 

  130. Bonilla, J.R., Hoyos Concha, J.L.: Métodos de extracción, refinación y concentración de aceite de pescado como fuente de ácidos grasos omega-3. Cienc. y Tecnol. Agropecu. 19, 645–668 (2018). https://doi.org/10.21930/rcta.vol19_num2_art:684

    Article  Google Scholar 

  131. Food and Agriculture Organization of the United Nations: The Production of Fish Meal and Oil. Food and Agriculture Organization of the United Nations, Rome (1986)

    Google Scholar 

  132. Thomas, A., Matthäus, B., Fiebig, H.: Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 14, pp. 1–70. Fats and fatty oils, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2015)

    Book  Google Scholar 

  133. Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y., Oh, H.M.: Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101, S75–S77 (2010). https://doi.org/10.1016/j.biortech.2009.03.058

    Article  Google Scholar 

  134. Halim, R., Danquah, M.K., Webley, P.A.: Extraction of oil from microalgae for biodiesel production: a review. Biotechnol. Adv. 30, 709–732 (2012). https://doi.org/10.1016/j.biotechadv.2012.01.001

    Article  Google Scholar 

  135. Mouahid, A., Crampon, C., Toudji, S.-A.A., Badens, E.: Supercritical CO2 extraction of neutral lipids from microalgae: experiments and modelling. J. Supercrit. Fluids 77, 7–16 (2013). https://doi.org/10.1016/j.supflu.2013.01.024

    Article  Google Scholar 

  136. Hathwar, S.C., Bijinu, B., Rai, A.K., Narayan, B.: Simultaneous recovery of lipids and proteins by enzymatic hydrolysis of fish industry waste using different commercial proteases. Appl. Biochem. Biotechnol. 164, 115–124 (2011). https://doi.org/10.1007/s12010-010-9119-5

    Article  Google Scholar 

  137. Qi-Yuan, L., Jun-Qing, Q., Xiao-Ge, W.: Optimization of enzymatic fish oil extraction from mackerel viscera by response surface methodology. Int. Food Res. J. 23, 992–997 (2016)

    Google Scholar 

  138. Fernández-Lorente, G., Betancor, L., Carrascosa, A.V., Guisán, J.M.: Release of omega-3 fatty acids by the hydrolysis of fish oil catalyzed by lipases immobilized on hydrophobic supports. JAOCS 88, 1173–1178 (2011). https://doi.org/10.1007/s11746-011-1776-1

    Article  Google Scholar 

  139. Beheshti, S.: A study on the fatty acid composition of fish liver oil from two marine fish. Turk. J. Chem. 27, 251–258 (2003)

    Google Scholar 

  140. Christie, W.W., Han, X.: Lipid Analysis-Isolation, Separation, Identification and Lipidomic Analysis [Book Review]. Woodhead Publishing, Cambridge (2010)

    Google Scholar 

  141. Antolín, E.M., Delange, D.M., Canavaciolo, V.G.: Evaluation of five methods for derivatization and GC determination of a mixture of very long chain fatty acids (C24:0-C36:0). J. Pharm. Biomed. Anal. 46, 194–199 (2008). https://doi.org/10.1016/j.jpba.2007.09.015

    Article  Google Scholar 

  142. Guil-Guerrero, J.L., Venegas-Venegas, E., Rincón-Cervera, M.Á., Suárez, M.D.: Fatty acid profiles of livers from selected marine fish species. J. Food Compos. Anal. 24, 217–222 (2011). https://doi.org/10.1016/j.jfca.2010.07.011

    Article  Google Scholar 

  143. Van Wychen, S., Laurens, L.M.L.: Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification. Contract 303, 275–3000 (2013)

    Google Scholar 

  144. Suganya, T., Kasirajan, R., Renganathan, S.: Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production. Bioresour. Technol. 156, 283–290 (2014). https://doi.org/10.1016/j.biortech.2014.01.050

    Article  Google Scholar 

  145. Dodds, E.D., McCoy, M.R., Rea, L.D., Kennish, J.M.: Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry. Lipids 40, 419–428 (2005). https://doi.org/10.1007/s11745-006-1399-8

    Article  Google Scholar 

  146. Aursand, M., Gribbestad, I.S., Martinez, I.: Omega-3 fatty acid content of intact muscle of farmed Atlantic Salmon (Salmo salar) examined by 1 H MAS NMR spectroscopy. Mod. Magn. Reson. 1, 941–945 (2008). https://doi.org/10.1007/978-3-319-28275-6_80-1.pdf

    Article  Google Scholar 

  147. Nilsang, S., Lertsiri, S., Suphantharika, M., Assavanig, A.: Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. J. Food Eng. 70, 571–578 (2005). https://doi.org/10.1016/j.jfoodeng.2004.10.011

    Article  Google Scholar 

  148. Samaranayaka, A.G.P., Li-Chan, E.C.Y.: Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107, 768–776 (2008). https://doi.org/10.1016/j.foodchem.2007.08.076

    Article  Google Scholar 

  149. Prabha, J., Narikimelli, A., Sajini, M.I., Vincent, S.: Optimization for autolysis assisted production of fish protein hydrolysate from underutilized fish Pellona ditchela. Int. J. Sci. Eng. Res. 4, 1863–1869 (2013)

    Google Scholar 

  150. dos Santos, S.D., Martins, V.G., Salas-Mellado, M., Prentice, C.: Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food Bioprocess Technol. 4, 1399–1406 (2011). https://doi.org/10.1007/s11947-009-0301-0

    Article  Google Scholar 

  151. Galla, N.R., Karakala, B., Akula, S., Pamidighantam, P.R.: Physico-chemical, amino acid composition, functional and antioxidant properties of roe protein concentrates obtained from Channa striatus and Lates calcarifer. Food Chem. 132, 1171–1176 (2012). https://doi.org/10.1016/J.FOODCHEM.2011.11.055

    Article  Google Scholar 

  152. Jemil, I., Abdelhedi, O., Mora, L., Nasri, R., Aristoy, M.-C., Jridi, M., Hajji, M., Toldrá, F., Nasri, M.: Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochem. 51, 2186–2197 (2016). https://doi.org/10.1016/J.PROCBIO.2016.08.021

    Article  Google Scholar 

  153. Wald, M., Schwarz, K., Rehbein, H., Bußmann, B., Beermann, C.: Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chem. 205, 221–228 (2016). https://doi.org/10.1016/J.FOODCHEM.2016.03.002

    Article  Google Scholar 

  154. Egerton, S., Culloty, S., Whooley, J., Stanton, C., Ross, R.P.: Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chem. 245, 698–706 (2018). https://doi.org/10.1016/J.FOODCHEM.2017.10.107

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FCT-Fundação para a Ciência e a Tecnologia (projectPEst-OE/QUI/UI0674/2019, CQM, Portuguese Government funds), and through Madeira 14–20 Program, project PROEQUIPRAM—Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM (M1420-01-0145-FEDER-000008) and by ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, through the project M1420-01-0145-FEDER-000005—Centro de Química da Madeira—CQM+ (Madeira 14-20). The work was also performed in the frame of project MarineBlueRefine PROCiência2020 (Portaria nº 371/2015, de 16/12), M1420-01-0247-FEDER-000006; Pedro Ideia is the recipient of a PhD Grant under the project M1420-09-5369-FSE-000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula C. Castilho.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ideia, P., Pinto, J., Ferreira, R. et al. Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods. Waste Biomass Valor 11, 3223–3246 (2020). https://doi.org/10.1007/s12649-019-00739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00739-1

Keywords

Navigation