Skip to main content

Advertisement

Log in

Overview of Antioxidant Peptides Derived from Marine Resources: The Sources, Characteristic, Purification, and Evaluation Methods

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Marine organisms are rich sources of structurally diverse bioactive nitrogenous components. In recent years, numerous bioactive peptides have been identified in a range of marine protein resources, such as antioxidant peptides. Many studies have approved that marine antioxidant peptides have a positive effect on human health and the food industry. Antioxidant activity of peptides can be attributed to free radicals scavenging, inhibition of lipid peroxidation, and metal ion chelating. Moreover, it has also been verified that peptide structure and its amino acid sequence can mainly affect its antioxidant properties. The aim of this review is to summarize kinds of antioxidant peptides from various marine resources. Additionally, the relationship between structure and antioxidant activities of peptides is discussed in this paper. Finally, current technologies used in the preparation, purification, and evaluation of marine-derived antioxidant peptides are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiological Reviews, 74, 139–62.

    CAS  Google Scholar 

  2. Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., & Lubee, G. (2003). Aberrant expression of peroxiredox in subtypes in neurodegenerative disorders. Brain Research, 967, 152–60.

    Article  CAS  Google Scholar 

  3. Ren, Y., Wu, H., Li, X. F., Lai, F. R., Zhao, G. L., & Xiao, X. L. (2014). A two-step, one-pot enzymatic method for preparation of duck egg white protein hydrolysates with high antioxidant activity. Applied Biochemistry and Biotechnology, 172, 1227–1240.

    Article  CAS  Google Scholar 

  4. Olfa, T., Dorra, G., Imen, B. S., Salem, E., Mohamed, N. A., Pascal, C., Maria, L. M., Thierry, J., & Ferid, L. (2012). Antioxidative and DNA protective effects of bacillomycin D-like lipopeptides produced by B38 strain. Applied Biochemistry and Biotechnology, 168, 2245–2256.

    Article  Google Scholar 

  5. Zhu, L. J., Chen, J., Tang, X. Y., & Xiong, L. Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56, 2714–2721.

    Article  CAS  Google Scholar 

  6. Butterfield, D. A., Castenga, A., Pocernich, C. B., Drake, J., Scapagnini, G., & Calabrese, V. (2002). Nutritional approaches to combat oxidative stress in Alzheimer’s disease. Journal of Nutrition and Biochemistry, 13, 444–461.

    Article  CAS  Google Scholar 

  7. Frankel, E. N. (2005). Lipid oxidation (2nd ed.). Bridgwater: The Oily Press.

    Book  Google Scholar 

  8. Cazzola, R., Piuri, G., & Cestaro, B. (2012). An overview on antioxidant supplements—the current situation from a scientific point of view. Agro Food Industry Hi-Technology, 23, 7–9.

    Google Scholar 

  9. Tiwari, A. K. (2001). Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidants therapy. Current Science, 81, 1179–1187.

    CAS  Google Scholar 

  10. Hettiarachchy, N. S., Glenn, K. C., Gnanasambandan, R., & Johnson, M. G. (1996). Natural antioxidant extract from fenugreek (Trigonella foenumgraecum) for ground beef patties. Journal of Food Science, 61, 516–519.

    Article  CAS  Google Scholar 

  11. Machie, I. M. (1974). Proteolytic enzymes in recovery of proteins from fish waste. Process Biochemistry, 9, 12–14.

    Google Scholar 

  12. Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., & Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107, 1485–1493.

    Article  CAS  Google Scholar 

  13. Kong, X. Z., Zhou, H. M., & Hua, Y. F. (2008). Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes. Journal of Science Food Agriculture, 88, 920–926.

    Article  CAS  Google Scholar 

  14. Ao, J., & Li, B. (2012). Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen. Food Science and Technology International, 18, 425–434.

    Article  CAS  Google Scholar 

  15. Sheih, I. C., Fang, T. J., Wu, T. K., & Lin, P. H. (2010). Anticancer and antioxidant activities of the peptide fraction from algae protein waste. Journal of Agriculture Food Chemistry, 58, 1202–1207.

    Article  CAS  Google Scholar 

  16. Ngo, D. H., Ryu, B. M., & Kim, S. K. (2014). Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chemistry, 143, 246–255.

    Article  CAS  Google Scholar 

  17. Ngo, D. H., Ryu, B. M., Vo, T. S., Himaya, S. W. A., Wijesekara, I., & Kim, S. K. (2011). Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. International Journal of Biological Macromolecules, 49, 1110–1116.

    Article  CAS  Google Scholar 

  18. Arancibia, M. Y., Ailén, A., Marta, M. C. M., Elvira, L. C., Pilar, M. M., & Carmen, G. G. (2014). Antimicrobial and antioxidant chitosan solutions enriched with active shrimp (Litopenaeus vannamei) waste materials. Food Hydrocolloids, 35, 710–717.

    Article  CAS  Google Scholar 

  19. He, H. L., Liu, D., & Ma, C. B. (2013). Review on the angiotensin-I-converting enzyme (ACE) inhibitor peptides from marine proteins. Applied Biochemistry and Biotechnology, 169, 738–749.

    Article  CAS  Google Scholar 

  20. Ko, J. Y., Lee, J. H., Samarakoon, K., Kim, J. S., & Jeon, Y. J. (2013). Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food and Chemical Toxicology, 52, 113–120.

    Article  CAS  Google Scholar 

  21. Herbert, M. (1960). Antioxidative effect of amino-acids. Nature, 186, 886–887.

    Article  Google Scholar 

  22. Tsai, J. S., Chen, T. J., Pan, B. S., Gong, S. D., & Chung, M. Y. (2008). Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry, 106, 552–558.

    Article  CAS  Google Scholar 

  23. Graciela, S. C., Myriam, S. M., Carla, P., Irineu, B., Maria, L. N., & Carlos, P. (2014). Fractionation of protein hydrolysates of fish and chicken using membrane ultrafiltration: investigation of antioxidant activity. Applied Biochemistry and Biotechnology, 172, 2877–2893.

    Article  Google Scholar 

  24. Chen, H. M., Muramoto, K., Fumio, Y., Kenshiro, F., & Kiyoshi, N. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agriculture Food and Chemistry, 46, 49–53.

    Article  CAS  Google Scholar 

  25. Elena, M. B., Enma, C., Andres, M., Elena, F., & Herminia, D. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry, 138, 1764–1785.

    Article  Google Scholar 

  26. Sacchetti, G., Di, M. C., Pittia, P., & Martino, G. (2008). Application of a radical scavenging activity test to measure the total antioxidant activity of poultry meat. Meat Science, 80, 1081–1085.

    Article  CAS  Google Scholar 

  27. Kalpa, S., & You-Jin, J. (2012). Bio-functionalities of proteins derived from marine algae—a review. Food Research International, 48, 948–960.

    Article  Google Scholar 

  28. Sheih, I. C., Wu, T. K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100, 3419–3425.

    Article  CAS  Google Scholar 

  29. Ko, S. C., Kim, D., & Jeon, Y. J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and Chemical Toxicology, 50, 2294–2302.

    Article  CAS  Google Scholar 

  30. Wang, T., Rósa, J., Hordur, G. K., Gudmundur, O. H., Jón, O. J., Gudjon, T., & Gudrún, O. (2010). Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmate. LWT - Food Science and Technology, 43, 1387–1393.

    Article  CAS  Google Scholar 

  31. Phanat, K., Soottawat, B., Wonnop, V., & Fereidoon, S. (2012). Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: antioxidant activity and its potential in model systems. Food Chemistry, 135, 1118–1126.

    Article  Google Scholar 

  32. Wang, B., Wang, Y. M., Chi, C. F., Luo, H. Y., Deng, S. G., & Ma, J. Y. (2013). Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Marine Drugs, 11, 4641–4661.

    Article  CAS  Google Scholar 

  33. Nazeer, R. A., Sampath, K. N. S., & Jai, G. R. (2012). In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate. Peptides, 35, 261–68.

    Article  CAS  Google Scholar 

  34. Chi, C. F., Wang, B., Deng, Y. Y., Wang, Y. M., Deng, S. G., & Ma, J. Y. (2014). Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle. Food Research International, 55, 222–228.

    Article  CAS  Google Scholar 

  35. Jiang, H. P., Tong, T. Z., Sun, J. H., Xu, Y. J., Zhao, Z. X., & Liao, D. K. (2014). Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chemistry, 154, 158–163.

    Article  CAS  Google Scholar 

  36. Wang, B., Gong, Y. D., Li, Z. R., Yu, D., Chi, C. F., & Ma, J. Y. (2014). Isolation and characterisation of five novel antioxidant peptides from ethanol-soluble proteins hydrolysate of spotless smoothhound (Mustelus griseus) muscle. Journal of Function and Food, 6, 176–185.

    Article  CAS  Google Scholar 

  37. Gómez, E. J., Bravo, L., Gómez, G. M. C., Alemán, A., & Montero, P. (2009). Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chemistry, 112, 18–25.

    Article  Google Scholar 

  38. Ahn, C. B., Kim, J. G., & Je, J. Y. (2014). Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chemistry, 147, 78–83.

    Article  CAS  Google Scholar 

  39. Ali, B., Naima, N. A., Laïla, M., Rozenn, R., Ahmed, B., Didier, G., & Moncef, N. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118, 559–565.

    Article  Google Scholar 

  40. Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., & Nokihara, K. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agriculture on Food Chemistry, 46, 49–53.

    Article  CAS  Google Scholar 

  41. Niranjan, R., Eresha, M., Jung, W. K., Je, J. Y., & Kim, S. K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38, 175–182.

    Article  Google Scholar 

  42. Eresha, M., Niranjan, R., Byun, H. G., & Kim, S. K. (2005). Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences, 77, 2166–2178.

    Article  Google Scholar 

  43. Guo, H., Yoshiaki, K., & Masami, Y. (2009). Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chemistry, 113, 238–245.

    Article  CAS  Google Scholar 

  44. Gabriella, P., Barbara, S., Matteo, G., Angelo, D. B. P., & Andrea, C. (2001). Modifications of wheat flour proteins during in vitro digestion of bread dough, crumb, and crust: an electrophoretic and immunological study. Journal of Agriculture Food and Chemistry, 49, 2254–2261.

    Article  Google Scholar 

  45. Sampath, K. N. S., Nazeer, R. A., & Jaiganesh, R. (2011). Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides, 32, 1496–1501.

    Article  Google Scholar 

  46. Ngo, D. H., Qian, Z. J., Vo, T. S., Ryu, B. M., & Kim, S. K. (2011). Antioxidant activity of gallate-chitooligosaccharides in mouse macrophage RAW264.7 cells. Carbohydrate Polymers, 84, 1282–1288.

    Article  CAS  Google Scholar 

  47. Zhang, J., Zhang, H., Wang, L., Guo, X., Wang, X., & Yao, H. (2009). Antioxidant activities of the rice endosperm protein hydrolysate: identification of the active peptide. European Food Research and Technology, 229, 709–719.

    Article  CAS  Google Scholar 

  48. Rohan, K., Mahinda, S., Yasantha, A., Abu, A., Lee, Y. J., Kim, S. K., Lee, J. B., & Jeon, Y. J. (2007). Protective effect of enzymatic extracts from microalgae against DNA damage induced by H2O2. Marine Biotechnology, 9, 479–490.

    Article  Google Scholar 

  49. Li, B., Chen, F., Wang, X., Ji, B., & Wu, Y. (2007). Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food Chemistry, 102, 1135–1143.

    Article  CAS  Google Scholar 

  50. Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42, 840–846.

    Article  CAS  Google Scholar 

  51. Hsu, K. C., Lu, G. H., & Jao, C. L. (2009). Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Research International, 42, 647–652.

    Article  CAS  Google Scholar 

  52. Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agriculture on Food and Chemistry, 51, 3661–3667.

    Article  CAS  Google Scholar 

  53. Xie, N. N., Huang, J. J., Li, B., Cheng, J. H., Wang, Z. C., Yin, J. F., & Yan, X. M. (2015). Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues. Food Chemistry, 173, 210–217.

    Article  CAS  Google Scholar 

  54. Wang, Q. K., Li, W., He, Y. H., Ren, D. D., Felicia, K., Song, L. L., & Yu, X. J. (2014). Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chemistry, 145, 991–996.

    Article  CAS  Google Scholar 

  55. Wang, B., Li, L., Chi, C. F., Ma, J. H., Luo, H. Y., & Xu, Y. F. (2013). Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry, 138, 1713–1719.

    Article  CAS  Google Scholar 

  56. Song, L. Y., Li, T. F., Yu, R. M., Yan, C. Y., Ren, S. F., & Zhao, Y. (2008). Antioxidant activities of hydrolysates of arca subcrenata prepared with three proteases. Marine Drugs, 6, 607–619.

    Article  CAS  Google Scholar 

  57. Cheung, I. W. Y., Cheung, L. K. Y., Tan, N. Y., & Li, C. E. C. Y. (2012). The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chemistry, 134, 1297–1306.

    Article  CAS  Google Scholar 

  58. Ali, T., Sabeena, F. K. H., Charlotte, J., & Caroline, P. B. (2014). Antioxidant activitie.s and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chemistry, 142, 318–326.

    Article  Google Scholar 

  59. Yang, J. I., Ho, H. Y., Chu, Y. J., & Chow, C. J. (2008). Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chemistry, 110, 128–136.

    Article  CAS  Google Scholar 

  60. Janet, C. C., Alan, J. H. A., Cristian, J. M., Gustavo, F. G. L., & Gloria, D. O. (2012). Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews. doi:10.1007/s12393-012-9058-8.

    Google Scholar 

  61. Pripp, A. H., Isaksson, T., Stepaniak, L., Sørhaug, T., & Ardo, Y. (2005). Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. Trends in Food Science and Technology, 16, 484–494.

    Article  CAS  Google Scholar 

  62. Catala, C. S., Benavente, F., Gimenez, E., Barbosa, J., & Sanz, N. V. (2010). Identification of bioactive peptides in hypoal-lergenic infant milk formulas by capillary electrophoresis–mass spectrometry. Analytica Chimica Acta, 683, 119–125.

    Article  Google Scholar 

  63. Byun, H. G., Lee, J. K., Park, H. G., Jeon, J. K., & Kim, S. K. (2009). Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochemistry, 44, 842–846.

    Article  CAS  Google Scholar 

  64. Martinez, G. R., Loureiro, A. P. M., Marques, S. A., Miyamoto, S., Yamaguchi, L. F., Onuki, J., Almeida, E. A., Garcia, C. C. M., Barbosa, L. F., Medeiros, M. H. G., & Di Mascio, P. (2003). Oxidative and alkylating damage in DNA. Mutation Research-Reviews Mutation, 544(2–3), 115–127.

    Article  CAS  Google Scholar 

  65. Xiong, S.L.,Lu, F.,Shi, M.J.,Wu, Z.M. (2012). Advanement of evaluation methods about DPPH radical scavenging activity in screening antioxidant. Science Technology Food Industry, Vol.33, No.08.

  66. Krishnanand, M., Himanshu, O., & Nabo, K. C. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chemistry, 130, 1036–1043.

    Article  Google Scholar 

  67. Kim, E. K., Hwang, J. W., Kim, Y. S., Ahn, C. B., Jeon, Y. J., Kweon, H. J., Young, Y. B., Moon, S. H., Jeon, B. T., & Park, P. J. (2013). A novel bioactive peptide derived from enzymatic hydrolysis of Ruditapes philippinarum: purification and investigation of its free-radical quenching potential. Process Biochemistry, 48, 325–330.

    Article  CAS  Google Scholar 

  68. Cheng, F. C., Jen, J. F., & Tsai, T. H. (2002). Hydroxyl radical in living systems and its separation methods. Journal of Chromatography B, 781, 481–496.

    Article  CAS  Google Scholar 

  69. William, M. N. (2014). Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. BBA-General Subjects, 1840, 757–767.

    Article  Google Scholar 

  70. You, H. J., Oh, D. H., Choi, C. Y., Lee, D. G., Hahm, K. S., Moon, A. R., & Jeong, H. G. (2002). Protective effect of metallothionein-III on DNA damage in response to reactive oxygen species. Biochemical Et Biophysica Acta-General Subjects, 1573, 33–38.

    Article  CAS  Google Scholar 

  71. Julia, W., Maria, R. C., Leandro, P., & Marcos, E. C. (2007). Effect of storage and processing on plasmid, yeast and plant genomic DNA stability in juice from genetically modified oranges. Journal of Biotechnology, 128, 194–203.

    Article  Google Scholar 

  72. Chai, H. J., Chan, Y. L., Li, T. L., Shiau, C. Y., & Wu, C. J. (2013). Evaluation of lanternfish (Benthosema pterotum) hydrolysates as antioxidants against hydrogen peroxide induced oxidative injury. Food Research International, 54, 1409–1418.

    Article  CAS  Google Scholar 

  73. Murainaa, I. A., Suleimanb, M. M., & Eloff, J. N. (2009). Can MTT be used to quantify the antioxidant activity of plant extracts? Phytomedicine, 16, 665–668.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (31070061, 31370104), Hunan Provincial Natural Science Foundation of China (13JJ9001), National Sparking Plan Project (2013GA770009), the Open-End Fund for the Valuable and Precision Instruments of Central South University, and Fundamental Research Funds for the Central Universities of Central South University (2015zzts273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HaiLun He or Hao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Wu, C., Liu, D. et al. Overview of Antioxidant Peptides Derived from Marine Resources: The Sources, Characteristic, Purification, and Evaluation Methods. Appl Biochem Biotechnol 176, 1815–1833 (2015). https://doi.org/10.1007/s12010-015-1689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1689-9

Keywords

Navigation