Skip to main content
Log in

Evaluation of Functional Properties in Protein Hydrolysates from Bluewing Searobin (Prionotus punctatus) Obtained with Different Microbial Enzymes

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis of proteins from low commercial value fish could be produced for uses like functional ingredients in a wide and always increasing zone of application in different food products. The objective of this work was to evaluate the functional properties and the amino acid profile of enzymatic hydrolysates from Bluewing searobin (Prionotus punctatus), using two microbial enzymes, Alcalase and Flavourzyme. The enzymatic hydrolysate obtained through the addition of the enzyme Alcalase reached the maximum solubility (42%) at pH 9, water holding capacity (WHC) of 2.4 gwater  gprotein −1, 4.5 goil gprotein −1 of oil holding capacity (OHC) and an emulsifying activity index (EAI) of 54 m2 gsolids −1 at pH 3. On the other hand, the hydrolysate obtained from Flavourzyme attained 38% of solubility at pH 9, 3.7 gwater  gprotein −1 and 5.5 goil gprotein −1 for the holding capacities, and an EAI of 71 m2 gsolids −1 at pH 11. The hydrolysate with Flavourzyme produced best results for WHC, OHC, and EAI because it had solubility lower than the hydrolysate of Alcalase. The hydrolysate produced by Alcalase had a higher amino acid content compared with Flavourzyme’s hydrolysate. However, both showed a good essential amino acid amounts. In general, these results indicate the potential utilization of the hydrolysate from Bluewing searobin in food formulations for the direct human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul-Hamid, A., Bakar, J., & Bee, G. H. (2002). Nutritional quality of spray dried protein hydrolysate from Black tilapia (Oreochromis mossambicus). Food Chemistry, 78, 69–74.

    Article  CAS  Google Scholar 

  • Adler-Nissen, J. (1986). A review of food hydrolysis specific areas. In enzymic hydrolysis of food proteins (pp. 57–109). Copenhagen: Elsevier Applied Science Publishers.

    Google Scholar 

  • AOAC. (1995). Official methods of analysis of international (16th ed.). Virginia: Arlington.

    Google Scholar 

  • Casarin, F., Cladera-Olivera, F., & Brandelli, A. (2008). Use of poultry byproduct for production of keratinolytic enzymes. Food and Bioprocess Technology, 1, 301–305.

    Article  Google Scholar 

  • Chandi, G. K., & Sogi, D. S. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79, 592–597.

    Article  CAS  Google Scholar 

  • Cheftel, J. C., Cuq, J. L., & Lorient, D. (1989). Proteínas alimentarías. Zaragoza: Acribia.

    Google Scholar 

  • Chothia, C. (1974). Hydrophobic bonding and accessible surface-area in proteins. Nature, 9, 248–338.

    Google Scholar 

  • Chothia, C. (1975). Structural invariants in protein folding. Nature, 8, 254–304.

    Google Scholar 

  • Contreras-Guzmán, E. S. (1994). Bioquímica de Pescados e Derivados, FUNEP: São Paulo.

  • Demetriades, K., Coupland, J. N., & McClements, D. J. (1997). Physical properties of whey protein stabilized emulsions as related to pH and NaCl. Journal of Food Science, 62, 342–347.

    Article  CAS  Google Scholar 

  • Diniz, F. M., & Martin, A. M. (1996). Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. International Journal of Food Science & Technology, 31, 419–426.

    Article  CAS  Google Scholar 

  • Dumay, J., Donnay-Moreno, C., Barnathan, G., Jaquen, P., & Bergé, J. P. (2006). Improvement of lipid and phospholipids recoveries from sardine (Sardina pilchardus) viscera using industrial proteases. Process Biochemistry, 41, 2327–2332.

    Article  CAS  Google Scholar 

  • El khalifa, A. E. O., Schiffler, B., & Bernhard, R. (2005). Effect of fermentation on the functional properties of sorghum flour. Food Chemistry, 92, 1–5.

    Article  CAS  Google Scholar 

  • Gauthier, S. F., Paquin, P., Pouliot, Y., & Turgeon, S. (1993). Surface activity and related functional properties of peptides obtained from whey proteins. Journal of Dairy Science, 76, 321–328.

    Article  CAS  Google Scholar 

  • Gildberg, A. (1993). Enzymatic processing of marine raw materials. Process Biochemistry, 28, 1–15.

    Article  CAS  Google Scholar 

  • Gildberg, A., Arnesen, J. A., & Carlehög, M. (2002). Utilization of cod backbone by biochemical fractionation. Process Biochemistry, 38, 475–480.

    Article  CAS  Google Scholar 

  • Guerard, F., Sumaya-Martinez, M. T., Laroque, D., Chabeaud, A., & Dufosse, L. (2007). Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochemistry, 42, 1486–1491.

    Article  CAS  Google Scholar 

  • Hoyle, N., & Merritt, J. H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59, 76–79.

    Article  CAS  Google Scholar 

  • Idouraine, A., Yense, S. B., & Weber, C. W. (1991). Terapy bean flour, albumin and globulin fractions properties compared with soy protein isolate. Journal of Food Science, 56, 1316–1318.

    Article  CAS  Google Scholar 

  • Je, J. K. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42, 840–846.

    Article  CAS  Google Scholar 

  • Jeon, Y. J., Hee-Guk, B., & Se-Kwon, K. (1999). Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochemistry, 35, 471–478.

    Article  Google Scholar 

  • Kristinsson, H. G., & Rasco, B. A. (2000). Kinetics of the hydrolysis of Atlantic salmon (Salmon solar) muscle proteins by alkaline proteases and a visceral serine protease mixture. Process Biochemistry, 36, 131–139.

    Article  CAS  Google Scholar 

  • Lempek, T. S., Martins, V. G., & Prentice, C. H. (2007). Rheology of surimi-based products from fatty fish underutilized by the industry: Argentine croaker (Umbrina canosai). Journal of Aquatic Food Product Technology, 16(4), 27–44.

    Article  CAS  Google Scholar 

  • Liaset, B., & Espe, M. (2008). Nutritional composition of soluble and insoluble fractions obtained by enzymatic hydrolysis of fish-raw materials. Process Biochemistry, 43, 42–48.

    Article  CAS  Google Scholar 

  • Liceaga-Gesualdo, A. M., & Li-Chan, E. C. Y. (1999). Functional properties of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science, 64, 1000–1004.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • McNairney, J. (1984). Modification of a novel protein product. Journal of Chemistry, Technology and Biotechnology. B: Biotechnology, 34, 206–214.

    Article  Google Scholar 

  • Maldonado, A. S. (1994). Comparación de quatro métodos para la recuperación de proteínas solubles eliminadas en la elaboración de surimi. Instituto Tecnológico Pesquero del Peru, 4, 15–26.

    Google Scholar 

  • Mahmoud, M. I. (1994). Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technology, 58, 89–95.

    Google Scholar 

  • Márquez, U. M. L., Mira, N. V. M., & Neves, R. A. M. (2004). Caracterização de hidrolisados enzimáticos de pescado. Ciência e Tecnologia de Alimentos, 24, 101–108.

    Article  Google Scholar 

  • Martin, R. E., Flick, G. J., Hebard, C. E., & Ward, D. D. (1982). Chemistry and biochemistry of marine food products. Westport: AVI Publishing Company.

    Google Scholar 

  • Martins, V. G., Costa, J. A. V., & Prentice-Hernández, C. (2009). Hidrolisado protéico de pescado obtido por vias química e enzimática a partir de corvina (Micropogonias furnieri). Química Nova, 32, 61–66.

    Article  CAS  Google Scholar 

  • Morais, C., Mantovani, D. M. B., & Carvalho, C. R. L. (1992). Rendimento cárneo e composição química da ictiofauna acompanhante na captura do camarão sete barbas (Xiphopenaeus kroyeri). Coletânea do Instituto de Tecnologia de Alimentos, 22, 62–72.

    Google Scholar 

  • Morr, V., German, B., Kinsella, J. E., Regenstein, J. M., Van Buren, J. P., Kilara, A., et al. (1985). A collaborative study to develop a standardized food protein solubility procedure. Journal of Food Science, 50, 1715–1718.

    Article  CAS  Google Scholar 

  • Mullally, M. M., O’Callaghan, D. M., Fitzgerald, R. J., Donnelly, W. J., & Dalton, J. P. (1995). Zymogen activation in pancreatic endoproteolytic preparations and influence on some whey protein characteristics. Journal of Food Science, 60, 227–233.

    Article  CAS  Google Scholar 

  • Nakai, S. (1983). Structure-function relationships of food proteins with an emphasis on the importance of protein hydrophobicity. Journal of Agricultural and Food Chemistry, 31, 676–683.

    Article  CAS  Google Scholar 

  • Nilsang, S., Lertsiti, S., Suphantharika, M., & Assavanig, A. (2005). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70, 571–578.

    Google Scholar 

  • Nolsoe, H., & Undeland, I. (2009). The acid and alkaline solubilization process for the isolation of muscle proteins. Food and Bioprocess Technology, 2, 1–27.

    Article  CAS  Google Scholar 

  • Normah, I., Jamilah, B., Saari, N., & Yaakob, B. C. M. (2005). Optimization of hydrolysis conditions for the production of threadfin bream (Nemipterus japonicus) hydrolysate by Alcalase. Journal of Muscle Foods, 16, 87–102.

    Article  CAS  Google Scholar 

  • Orban, E., Quaglia, G. B., Casini, I., Caproni, R., & Moneta, E. (1992). Composition and functionality of sardine native proteins. Lebensmittel-Wissenschaft und Technologie, 25, 371–373.

    CAS  Google Scholar 

  • Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: evaluation of turbidimetric technique. Journal of Agriculture and Food Chemistry, 26, 716–723.

    Article  CAS  Google Scholar 

  • Poustie, U. J., & Rutherford, P. (2002). Dietary intervention for phenylketnuria. Oxford: The Cochrane Library.

    Google Scholar 

  • Quaglia, G. B., & Orban, E. (1987a). Enzymatic solubilisation of proteins of sardine (Sardina pilchardus) by commercial proteases. Journal of Science and Food Agriculture, 38, 263–269.

    Article  CAS  Google Scholar 

  • Quaglia, G. B., & Orban, E. (1987b). Influence of the degree of hydrolysis on the solubility of protein hydrolysates from sardine (Sardina pilchardus). Journal of Science and Food Agriculture, 38, 271–276.

    Article  CAS  Google Scholar 

  • Rebeca, B. D., Peña-Vera, M. T., & Díaz-Castañeda, M. (1991). Production of fish protein hydrolysates with bacterial proteases; yield and nutritional value. Journal of Food Science, 56, 309–314.

    Article  CAS  Google Scholar 

  • Rodríguez-Ambriz, S. L., Martínez-Ayala, A. L., Millán, F., & Dávila-Ortiz, G. (2005). Composition and functional properties of Lupinus campestris protein isolates. Plant Foods for Human Nutrition, 60, 99–107.

    Article  Google Scholar 

  • Rosa, C. S. (2000). Estudo das propriedades funcionais do colágeno obtido da pele de frango. Dissertação em Mestrado em Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Maria. Santa Maria: UFSM.

    Google Scholar 

  • Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J. M., Gildberg, A., & Rasco, B. (2009). Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0225-8.

  • Santos, S. D., Martins, V. G., Salas-Mellado, M., & Prentice-Hernández, C. (2009). Otimização dos parâmetros de produção de hidrolisados protéicos enzimáticos utilizando pescado de baixo valor comercial. Química Nova, 32, 72–77.

    Article  Google Scholar 

  • Skanderby, M. (1994). Protein hydrolysates: their functionality and applications. European Food Technology International, 10, 141–144.

    Google Scholar 

  • Slizyte, R., Dauksas, E., Falch, E., Storrro, I., & Rustad, T. (2005). Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products. Process Biochemistry, 40, 2021–2033.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Coordination for Improvement of Superior Education Personal of Brazil (CAPES) and National Council for Scientific and Technological Development of Brazil (CNPq) for financial support to carry out experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Prentice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, S.D., Martins, V.G., Salas-Mellado, M. et al. Evaluation of Functional Properties in Protein Hydrolysates from Bluewing Searobin (Prionotus punctatus) Obtained with Different Microbial Enzymes. Food Bioprocess Technol 4, 1399–1406 (2011). https://doi.org/10.1007/s11947-009-0301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0301-0

Keywords

Navigation