Skip to main content
Log in

Dynamic behavior in memristor coupled Hindmarsh–Rose and Fitzhugh–Nagumo neurons with synaptic crosstalk

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Synaptic crosstalk is ubiquitous in many brain regions, but its effect on firing activities of neural network has rarely been studied. In this study, a heterogeneous neural network constructed with one Hindmarsh–Rose neuron model and one Fitzhugh–Nagumo neuron model is developed, in which the synaptic crosstalk is emulated by two mutually coupled memristors. The effect of crosstalk intensities on the firing activities of the neural network are discussed by time series, phase diagrams, Lyapunov exponents, and dynamic mapping. For different crosstalk intensities, the coexisting periodic firing and chaotic firing, the coexisting periodic firing and periodic firing, the coexisting chaotic firing and periodic firing, and the coexisting chaotic firing and chaotic firing are observed in the neural network under different memristor’s initial values. Furthermore, the effect of crosstalk intensity on synchronous firing between two neurons is also revealed and it is found that the two heterogeneous neurons transit from initially oscillate independently to gradually achieve fully synchronous firing behavior as the crosstalk intensities decrease. Finally, the numerical simulations are verified by circuit simulation experiment based on Multisim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M Wang et al Neuron. 77 736 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J Ma J Tang Nonlinear Dynamics. 89 1569 (2017)

    Article  Google Scholar 

  3. Y Xu, J Ma, X Zhan, L Yang, Y Jia Cognitive Neurodynamics. 13 601 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. H Wang, Q Lu, Q Wang Communications in Nonlinear Science and Numerical Simulation. 13 1668 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. J L Hindmarsh, R M Rose Nature. 296 162 (1982)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Z Wang, Q Hong, X Wang IEEE Transactions on Biomedical Circuits and Systems. 13 631 (2019)

    Article  PubMed  Google Scholar 

  7. T R Chay, Y S Fan, S Lee International Journal of Bifurcation and Chaos. 5 595 (1995)

    Article  ADS  Google Scholar 

  8. Q Xu and X Tan Solitons & Fractals. 141 110353 (2020)

    Article  Google Scholar 

  9. J L Hindmarsh, R M Rose Proceedings of the Royal society of London. Series B. Biological sciences. 221 87 (1984)

    ADS  CAS  PubMed  Google Scholar 

  10. Y Yao et al Complexity. 2018 1 (2018)

    ADS  Google Scholar 

  11. Y Yao, J Ma Cognitive Neurodynamics. 12 343 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  12. F Wu, J Ma, G Zhang Applied Mathematics and Computation. 347 590 (2019)

    Article  MathSciNet  Google Scholar 

  13. D B Strukov et al Nature. 453 80 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. K Wu, T Luo, H Lu, Y Wang Neural Computing and Applications 27 739 (2016)

    Article  Google Scholar 

  15. E M Ngouonkadi et al Chaos, Solitons & Fractals. 85 151 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. B Bao et al Nonlinear Dynamics. 92 1695 (2018)

    Article  Google Scholar 

  17. S Binczak et al Neural Network. 19 684 (2006)

    Article  Google Scholar 

  18. D Ding et al Chaos, Solitons & Fractals. 158 112014 (2022)

    Article  Google Scholar 

  19. J Ma et al Applied Mathematics and Computation. 307 321 (2017)

    Article  MathSciNet  Google Scholar 

  20. Z Li, Z Guo, M Wang, M Ma International Journal Electronic Communication. 142 153995 (2021)

    Article  Google Scholar 

  21. T Stegall, K A Krolick Journal of Neuroimmunology. 119 377 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. H Gu, B Pan, G Chen, L Duan Nonlinear Dynamics. 78 391 (2014)

    Article  MathSciNet  Google Scholar 

  23. M Ma et al Chinese Physics B. 32 058701 (2023)

    Article  ADS  Google Scholar 

  24. M Ma et al Mathematics. 11 375 (2023)

    Article  Google Scholar 

  25. H Lin, C Wang, Q Hong, Y Sun IEEE Transactions on Circuits and Systems II: Express Briefs. 67 3472 (2020)

    Google Scholar 

  26. M Ma et al Nonlinear Dynamics. 107 2935 (2022)

    Article  Google Scholar 

  27. Q Wan, F Li and S Chen Solitons & Fractals. 169 113259 (2023)

    Article  Google Scholar 

  28. Y Leng et al Chaos: An Interdisciplinary Journal of Nonlinear Science. 30 033108 (2020)

    Article  MathSciNet  Google Scholar 

  29. F Wu, Y Zhang, X Zhang Nonlinear Dynamics. 98 971 (2019)

    Article  Google Scholar 

  30. R Li, Z Wang, E Dong Nonlinear Dynamics. 104 4459 (2021)

    Article  Google Scholar 

  31. Y Xu et al Chaos, Solitons & Fractals. 104 435 (2017)

    Article  ADS  Google Scholar 

  32. H Bao, Y Zhang, W Liu, B Bao Nonlinear Dynamics. 100 937 (2020)

    Article  Google Scholar 

  33. Z Li, H Zhou, M Wang, M Ma Nonlinear Dynamics. 104 1455 (2021)

    Article  Google Scholar 

  34. T Kloek, The effect of dendritic spine morphology on synaptic crosstalk: Two multi-synapse models, integrating diffusion on curved surfaces (2015)

  35. M Kawahara, M Kato-Negishi, K Tanaka Metallomics. 9 619 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. A N Shrivastava, A Triller, W Sieghart Frontiers in cellular neuroscience. 5 7 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Q Li, S Tang, H Zeng, T Zhou Nonlinear Dynamics. 78 1087 (2014)

    Article  Google Scholar 

  38. H Wang, Q Lu, X Shi Chinese Physics B. 19 060509 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China under Grant No. 62171401 and 62071411 and the Hunan Provincial Natural Science Foundation of China under Grant No. 2022JJ30572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Peng, C., Wang, M. et al. Dynamic behavior in memristor coupled Hindmarsh–Rose and Fitzhugh–Nagumo neurons with synaptic crosstalk. Indian J Phys 98, 1043–1059 (2024). https://doi.org/10.1007/s12648-023-02845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02845-2

Keywords

Navigation