Skip to main content
Log in

Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The change of firing rates depends on how synaptic features interact with intrinsic properties of cells in neural system. Considering the chemical synaptic features, we design a controllable memristive synapse with magnetic coupling that are voltage-controlled, nonlinear, and unidirectional. To explore the effect of firing rates on interactions between synapse and neuron, the memristive synaptic current involving excitation and inhibition is then mapped into a generalized neuronal model. We observe and characterize the appearance of counterintuitive behavior that increased excitatory memristive synaptic current leads to the decrease in firing rates, and increased inhibitory memristive synaptic current leads to the increase in firing rates in the neural circuit. For the counterintuitive phenomenon, we utilize a geometric dynamics method to provide an underlying dynamics mechanism how the excitatory or inhibitory current impacts the decrease or increase in firing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Denève, S., Machens, C.K.: Efficient codes and balanced networks. Nat. Neurosci. 19, 375–382 (2016)

    Google Scholar 

  2. Pecka, M., Han, Y., Sader, E., Mrsic-Flogel, T.D.: Experience-dependent specialization of receptive field surround for selective coding of natural scenes. Neuron. 84, 457–469 (2014)

    Google Scholar 

  3. Sun, Y.J., Wu, G.K., Liu, B.H., Li, P., Zhou, M., Xiao, Z., Tao, H.W., Zhang, L.I.: Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature 465, 927–931 (2010)

    Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: Action potentials recorded a Mauthner from inside. Nature 144, 710–711 (1939)

    Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  6. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107, 165–181 (1948)

    Google Scholar 

  7. Prescott, S.A., De Koninck, Y., Sejnowski, T.J.: Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4, e1000198 (2008)

    MathSciNet  Google Scholar 

  8. Perkel, D.H., Schulman, J.H., Bullock, T.H., Moore, G.P., Segundo, J.P.: Pacemaker neurons: effects of regularly spaced synaptic input. Science 145, 61–63 (1964)

    Google Scholar 

  9. Kuffler, S.W., Eyzaguirre, C.: Synaptic inhibition in an isolated nerve cell. J. Gen. Physiol. 39, 155–184 (1955)

    Google Scholar 

  10. Park, T.J., Grothe, B., Pollak, G.D., Schuller, G., Koch, U.: Neural delays shape selectivity to interaural intensity differences in the lateral superior olive. J. Neurosci. 16, 6554–6566 (1996)

    Google Scholar 

  11. Sanes, D.: An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive. J. Neurosci. 10, 3494–3506 (1990)

    Google Scholar 

  12. Chance, F.S., Abbott, L.F., Reyes, A.D.: Gain modulation from background synaptic input. Neuron. 35, 773–782 (2002)

    Google Scholar 

  13. Zador, A.M., Stevens, C.F.: Input synchrony and the irregular firing of cortical neurons. Nat. Neurosci. 1, 210–217 (1998)

    Google Scholar 

  14. Mitchell, S.J., Silver, R.A.: Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron. 38, 433–445 (2003)

    Google Scholar 

  15. Carvalho, T.P., Buonomano, D.V.: Differential effects of excitatory and inhibitory plasticity on synaptically driven neuronal input–output functions. Neuron 61, 774–785 (2009)

    Google Scholar 

  16. Harsch, A., Robinson, H.P.C.: Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J. Neurosci. 20, 6181–6192 (2000)

    Google Scholar 

  17. Dodla, R., Svirskis, G., Rinzel, J.: Well-timed, brief inhibition can promote spiking: postinhibitory facilitation. J. Neurophysiol. 95, 2664–2677 (2006)

    Google Scholar 

  18. Beiderbeck, B., Myoga, M.H., Müller, N.I.C., Callan, A.R., Friauf, E., Grothe, B., Pecka, M.: Precisely timed inhibition facilitates action potential firing for spatial coding in the auditory brainstem. Nat. Commun. 9, 1771 (2018)

    Google Scholar 

  19. Kopp-Scheinpflug, C., Sinclair, J.L., Linden, J.F.: When sound stops: offset responses in the auditory system. Trends Neurosci. 41, 712–728 (2018)

    Google Scholar 

  20. Myoga, M.H., Lehnert, S., Leibold, C., Felmy, F., Grothe, B.: Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nat. Commun. 5, 1–13 (2014)

    Google Scholar 

  21. Kotak, V.C., Korada, S., Schwartz, I.R., Sanes, D.H.: A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J. Neurosci. 18, 4646–4655 (1998)

    Google Scholar 

  22. Bacci, A., Huguenard, J.R., Prince, D.A.: Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex. J. Neurosci. 23, 859–866 (2003)

    Google Scholar 

  23. Perkel, D.H., Mulloney, B., Budelli, R.W.: Quantitative methods for predicting neuronal behavior. Neuroscience 6, 823–837 (1981)

    Google Scholar 

  24. Li, Y., Schmid, G., Hänggi, P., Schimansky-Geier, L.: Spontaneous spiking in an autaptic Hodgkin–Huxley setup. Phys. Rev. E 82, 061907 (2010)

    MathSciNet  Google Scholar 

  25. Wang, H., Chen, Y.: Influence of autapse on mode-locking structure of a Hodgkin–Huxley neuron under sinusoidal stimulus. J. Theor. Biol. 358, 25–30 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Yilmaz, E., Ozer, M., Baysal, V., Perc, M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Google Scholar 

  27. Baysal, V., Yilmaz, E., Özer, M.: Blocking of weak signal propagation via autaptic transmission in scale-free networks. Istanb. Univ. J. Electr. Electron. Eng. 17, 3081–3085 (2017)

    Google Scholar 

  28. Yilmaz, E., Baysal, V., Ozer, M., Perc, M.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Phys. A. 444, 538–546 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Bera, B.K., Ghosh, D., Lakshmanan, M.: Chimera states in bursting neurons. Phys. Rev. E. 93, 012205 (2016)

    MathSciNet  Google Scholar 

  30. Majhi, S., Ghosh, D.: Alternating chimeras in networks of ephaptically coupled bursting neurons. Chaos 28, 083113 (2018)

    MathSciNet  Google Scholar 

  31. Bera, B.K., Rakshit, S., Ghosh, D., Kurths, J.: Spike chimera states and firing regularities in neuronal hypernetworks. Chaos 29, 053115 (2019)

    MathSciNet  Google Scholar 

  32. Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)

    Google Scholar 

  33. Gjoni, E., Zenke, F., Bouhours, B., Schneggenburger, R.: Specific synaptic input strengths determine the computational properties of excitation-inhibition integration in a sound localization circuit. J. Physiol. 596, 4945–4967 (2018)

    Google Scholar 

  34. Gerstner, W., Kistler, W., Naud, R., Paninski, L.: Neuronal Dynamics From Single Neurons to Networks and Models of Cognition. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  35. Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. 95, 5323–5328 (2002)

    Google Scholar 

  36. Brughera, A.R., Stutman, E.R., Carney, L.H., Colburn, H.S.: A model with excitation and inhibition for cells in the medial superior olive. Audit. Neurosci. 2, 219–233 (1996)

    Google Scholar 

  37. Large, E.W., Crawford, J.D.: Auditory temporal computation: Interval selectivity based on post-inhibitory rebound. J. Comput. Neurosci. 13, 125–142 (2002)

    Google Scholar 

  38. Brand, A., Behrend, O., Marquardt, T., McAlpine, D., Grothe, B.: Precise inhibition is essential for microsecond interaural time difference coding. Nature 417, 543–547 (2002)

    Google Scholar 

  39. Li, X., Jia, Y., Wang, Y., Kui, Z.: The collective bursting dynamics in a modular neuronal network with synaptic plasticity. Nonlinear Dyn. 89, 2593–2602 (2017)

    MathSciNet  Google Scholar 

  40. Rothman, J.S., Young, E.D., Manis, P.B.: Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J. Neurophysiol. 70, 2562–2583 (1993)

    Google Scholar 

  41. Casadiego, J., Maoutsa, D., Timme, M.: Inferring network connectivity from event timing patterns. Phys. Rev. Lett. 121, 054101 (2018)

    Google Scholar 

  42. Roxin, A., Riecke, H., Solla, S.A.: Self-sustained activity in a small-world network of excitable neurons. Phys. Rev. Lett. 92, 198101 (2004)

    Google Scholar 

  43. Yaroslav, F., Kossio, K., Goedeke, S., van den Akker, B.: Growing critical?: self-organized criticality in a developing neural system. Phys. Rev. Lett. 121, 058301 (2018)

    Google Scholar 

  44. Jonas, P., Racca, C., Sakmann, B., Seeburg, P.H., Monyer, H.: Differences in \(Ca^{2+}\) permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281–1289 (1994)

    Google Scholar 

  45. Koh, D.S., Geiger, J.R., Jonas, P., Sakmann, B.: \({\rm Ca}^{2+}\)-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus. J. Physiol. 485, 383–402 (1995)

    Google Scholar 

  46. Jahr, C.E., Stevens, C.F.: Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10, 3178–3182 (1990)

    Google Scholar 

  47. Wang, X.-J.: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999)

    Google Scholar 

  48. Higo, S., Akashi, K., Sakimura, K., Tamamaki, N.: Subtypes of GABAergic neurons project axons in the neocortex. Front. Neuroanat. 3, 25–30 (2009)

    Google Scholar 

  49. Braestrup, C., Nielsen, M.: Strychnine as a potent inhibitor of the brain GABA/benzodiazepine receptor complex. Brain Res. Bull. 5, 681–684 (1980)

    Google Scholar 

  50. Zhang, Z., Li, T., Wu, Y., et al.: Truly concomitant and independently expressed short- and long-term plasticity in a \({\rm Bi}_{2}{\rm O}_{2}\)Se-based three-terminal memristor. Adv. Mater. 31, 1805769 (2019)

    Google Scholar 

  51. Najem, J.S., Taylor, G.J., Weiss, R.J., et al.: Memristive Ion channel-doped biomembranes as synaptic mimics. ACS Nano 12, 4702–4711 (2018)

    Google Scholar 

  52. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Google Scholar 

  53. Flores, E.A., Tsang, K.K., Crowell, J.A., Yi, W., Lam, S.K., Bai, X.: Biological plausibility and stochasticity in scalable \({\rm VO}_{{2}}\) active memristor neurons. Nat. Commun. 9, 4661 (2018)

    Google Scholar 

  54. Babacan, Y., Kaçar, F., Gürkan, K.: A spiking and bursting neuron circuit based on memristor. Neurocomputing 203, 86–91 (2016)

    Google Scholar 

  55. Zhang, T., Yang, K., Xu, X., Cai, Y., Yang, Y., Huang, R.: Memristive devices and networks for brain-inspired computing. Phys. Status Solidi Rapid Res. Lett. 13, 1900029 (2019)

    Google Scholar 

  56. Kana, L.K., Fomethe, A., Fotsin, H.B., Wembe, E.T., Moukengue, A.I.: Complex dynamics and synchronization in a system of magnetically coupled colpitts oscillators. J. Nonlinear Dyn. 2017, 5483965 (2017)

    MATH  Google Scholar 

  57. Blaha, K.A., Huang, K., Della Rossa, F., Pecora, L., Hossein-Zadeh, M., Sorrentino, F.: Cluster synchronization in multilayer networks: a fully analog experiment with LC oscillators with physically dissimilar coupling. Phys. Rev. Lett. 122, 014101 (2019)

    Google Scholar 

  58. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Google Scholar 

  59. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    MathSciNet  Google Scholar 

  60. Rose, J.L., Hindmarsh, R.M.R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102 (1984)

    Google Scholar 

  61. Rinzel, J.: A Formal Classification of Bursting Mechanisms in Excitable Systems, pp. 267–281. Springer, Berlin (1987)

    MATH  Google Scholar 

  62. Barrio, R., Shilnikov, A.: Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh–Rose model. J. Math. Neurosci. 1, 6 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014)

    Google Scholar 

  64. Rinzel, J.: Bursting Oscillations in an Excitable Membrane Model, pp. 304–316. Springer, Berlin (1985)

    MATH  Google Scholar 

  65. Guckenheimer, J., Harris-Warrick, R., Peck, J., Willms, A.: Bifurcation, bursting, and spike frequency adaptation. J. Comput. Neurosci. 4, 257–277 (1997)

    MATH  Google Scholar 

  66. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience, vol. 35. Springer, Berlin (2010)

    MATH  Google Scholar 

  67. Sayedaghaee, S.O., Xu, B., Prosandeev, S., Paillard, C., Bellaiche, L.: Novel dynamical magnetoelectric effects in multiferroic \({\rm BiFeO}_{{3}}\). Phys. Rev. Lett. 122, 097601 (2019)

    Google Scholar 

  68. Ma, J., Wu, F., Ren, G., Tang, J.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  MATH  Google Scholar 

  69. Wu, F., Ma, J., Ren, G.: Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J. Zhejiang Univ. A. 19, 889–903 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors thank editor Jun Ma and anonymous reviewers for their valuable comments and suggestions that helped to improve the paper. This work is supported by National Natural Science Foundation of China under Grants. 11765011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Wu.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Model description in phasor domain

Appendix: Model description in phasor domain

Here, we design a controllable memristive system composed of the voltage follow, magnetic coupling, and two multipliers. The schematic diagram is shown in Fig. 12.

Fig. 12
figure 12

The analog circuit composed of two voltage follows (U1, U2), the transformer (T2) to characterize magnetic coupling, and two multipliers (A1, A2). The two red oblique 8-type curves are plotted via analog circuit and numerical stimulation, respectively. Note that the red arrow denotes input voltage and the black arrow denotes output current. (Color figure online)

Note that, our designed memristive system is a voltage-controlled and time-varying devices with only a unidirectional output current \(i_{M}\). This system also exhibits current–voltage hysteresis in the inset of Fig. 12. Applying the Kirchhoff’s law into the magnetic coupling part of circuit mentioned above, the coupling equations are obtained by

$$\begin{aligned} \left\{ {\begin{array}{l} i_1 R_1 + j \omega L_1 i_1 - j \omega Mi_2= V_1,\\ - j \omega Mi_1 + j \omega L_2 i_2 - i_2 R_2= V_2. \end{array}} \right. \end{aligned}$$
(S1)

where \(i_{1}\), \(V_{1}\), and \(i_{2}\), \(V_{2}\) represent the time-harmonic current and voltage in primary coil and secondary coil, respectively. The voltage follow U1 can guarantee the unidirectional current input, and \(V_{1}\) is equal to \(V_{\mathrm{pre}}\). R, L, and M are the resistance, self-inductance, and mutual inductance. \(j\omega \) denotes the derivative with respect to time variable \(\tau \). \(\omega \) is the angular frequency. Due to the existence of a voltage follow U2, the current in secondary circuit is zero as \(i_{2}= 0\). Thus, Eq. (S1) is rewritten as

$$\begin{aligned} \left\{ {\begin{array}{l} i_1 R_1 + j \omega L_1 i_1 = V_1,\\ - j \omega Mi_1 = V_2. \end{array}} \right. \end{aligned}$$
(S2)

where \(R_{1}\) is the controllable resistance to mediate the oscillatory frequency so that there is a different relationship between current and voltage in the whole circuit. Through the analog multiplier A1, we get

$$\begin{aligned} \left\{ {\begin{array}{l} i_1 R_1 + j \omega L_1 i_1 = V_1,\\ V_2^{2} = -\omega ^{2} M^{2}i_1^{2}. \end{array}} \right. \end{aligned}$$
(S3)

The eventual output signal in the phasor-domain representation through the analog multipliers A2 reads

$$\begin{aligned} \left\{ {\begin{array}{l} i_M = \frac{V_2^{2}(V_{\mathrm{post}}-E_{\mathrm{rev}})}{V_0^{2}R_6},\\ j \omega L_1 i_1 = V_1 -i_1 R_1. \end{array}} \right. \end{aligned}$$
(S4)

The eventual output current in the time-domain representation reads

$$\begin{aligned} \left\{ {\begin{array}{l} i_M =\frac{V_2^2 (V_{\mathrm{post}} -E_{\mathrm{rev}} )}{V_0^2 R_6 }, \\ L_1 \frac{\mathrm{d}i_1 }{\mathrm{d}\tau }=V_1 -i_1 R_1. \\ \end{array}} \right. \end{aligned}$$
(S5)

Further, the potential scale transformation is considered as following equations

$$\begin{aligned} \left\{ {\begin{array}{l} x_{\mathrm{pre}} =\frac{V_1 }{V_0 },x_{\mathrm{post}} =\frac{V_{\mathrm{post}} }{V_0 },w=\frac{i_1 }{I_0 },\tau =\frac{t}{L_1 /R_1 }, \\ x_{\mathrm{rev}} =\frac{E_{\mathrm{rev}} }{V_0 },k_1 =\frac{V_0 }{I_0 R_1 },k_M =\frac{\omega ^{2}M^{2}I_0^2 }{V_{0} R_6 }. \\ \end{array}} \right. \end{aligned}$$
(S6)

Substituting Eq. (S6) into Eq. (S5), the memristive synaptic current is given by

$$\begin{aligned} \left\{ {\begin{array}{l} i_M =k_M w^{2}(x_{\mathrm{rev}} -x_{\mathrm{post}} ), \\ \frac{\mathrm{d}w}{\mathrm{d}t}=k_1 x_{\mathrm{pre}} -w. \\ \end{array}} \right. \end{aligned}$$
(S7)

where \(i_{M}\) denotes the output current through a memristive system involving magnetic coupling and w is a dimensionless internal state. The approach based on the phasor domain is also able to describe the memristive synaptic current of Eq. (S7) consistent with Eq. (9) obtained from the time domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Zhang, Y. & Zhang, X. Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling. Nonlinear Dyn 98, 971–984 (2019). https://doi.org/10.1007/s11071-019-05239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05239-4

Keywords

Navigation