Skip to main content
Log in

Stochastic resonance in a monostable system driven by time-delayed feedback

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The characteristic of a monostable stochastic resonance system driven by time-delayed feedback is investigated. Under the small-delay approximation theory, the effective potential function of the system is obtained and the influence of system parameters on the shape of the potential function is also discussed. Furthermore, we consider the influence of the input signal on the system and derive the asymmetric bistable potential function. By using the adiabatic approximation theory and the two-state theory, the theoretical expressions of the steady-state probability distribution function, mean first-passage time and signal-to-noise ratio are obtained, which are three excellent metrics to measure the performance of system. Simulation results show that the parameters A, a and τ can motivate the SR phenomenon while β suppresses the SR phenomenon. At last, the numerical simulation results obtained from the original Langevin equation and the effective Langevin equation can verify whether the theoretical derivation is correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N Yeung, M M Botvinick and J D Cohen Psychol Rev. 111 931 (2004)

    Article  Google Scholar 

  2. B M Grafov and I B Grafova Electrochem Commun. 2 386 (2000)

    Article  Google Scholar 

  3. M Blanco-Velasco, B Weng and K E Barner Comput Biol Med. 38 1 (2008)

    Article  Google Scholar 

  4. Y S Fan and G T Zheng Mech Syst Signal Pr. 21 678 (2013)

    Article  Google Scholar 

  5. V N Hari, G V Anand and A B Premkumar Digit Signal Process. 23 1645 (2013)

    Article  MathSciNet  Google Scholar 

  6. K Wiesenfeld, D Pierson, E Pantazelou and C Dames Phys Rev Lett. 72 2125 (1994)

    Article  ADS  Google Scholar 

  7. C Z Feng and W L Duan Indian J. Phys. 88 107 (2014)

    Article  ADS  Google Scholar 

  8. M Sahoo and A M Jayannavar Indian J. Phys. 84 1421(2010)

    Article  ADS  Google Scholar 

  9. P W Miller, L W McGowan, U Bergmann and D Farrell Med Hypotheses. 121 106(2018)

    Article  Google Scholar 

  10. V Ravichandran, V Chinnathambi and S Rajasekar Indian J. Phys. 83 1593 (2009)

    Google Scholar 

  11. S L Lu, Q B He and J Wang Mech Syst Signal Pr. 116 230 (2019)

    Article  Google Scholar 

  12. S L Lu, Q B He and J W Zhao Mech Syst Signal Pr. 113 36 (2018)

    Article  Google Scholar 

  13. P Zandiyeh, J C Kupper, N G H Mohtadi and P Goldsmith G Biomech. 84 52(2019)

  14. O White, J Babic, C Trenado and L Johannsen Front Physiol. 9 1865(2019)

    Article  Google Scholar 

  15. S L Lu, R Q Yan and Y B Liu IEEE T Instrum Meas. 28 2135(2019)

    Google Scholar 

  16. N V Agudov, A V Krichigin, D Valenti and B Spagnolo Phys Rev E. 81 051123 (2010)

    Article  ADS  Google Scholar 

  17. R Y Chen and L R Nie Indian J. Phys. 91 973 (2017)

    Article  ADS  Google Scholar 

  18. H Q Zhang, Y Xu, W Xu and X C Li Chaos. 22 043130 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. D C Mei, G Z Xie, L Y Cao and D J Wu Phys Rev E. 59 3880 (1999)

    Article  ADS  Google Scholar 

  20. I G Silva, O A Rosso, M V D Vermelho and M L Lyra Commun Nonlinear Sci. 22 641(2015)

    Article  Google Scholar 

  21. W L Reenbohn, S S Pohlong and M C Mahato Phys Rev E. 85 031144 (2012)

    Article  ADS  Google Scholar 

  22. X M Lv Indian J. Phys. 87 903 (2013)

    Article  ADS  Google Scholar 

  23. I Bacic, V Klinshov, V Nekorkin and M Perc EPL-Europhys Let. 124 40004(2018)

    Article  ADS  Google Scholar 

  24. G Hu, C Min and Y Tian Acta Phys Pol A. 45 29 (2014)

    Article  ADS  Google Scholar 

  25. B Aragie Int G Mod Phys B. 28 1550011 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. B Zhou and D Lin Indian J. Phys. 91 299 (2017)

    Article  ADS  Google Scholar 

  27. J Liu and Y G Wang Physica A. 493 359(2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. P M Shi, W Y Zhang, D Z Yuan and H F Xia Chaos Soliton Fract. 113 365(2018)

    Article  ADS  Google Scholar 

  29. P M Shi, Y F Jin and S M Xiao Chaos. 27 113109(2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. P M Shi, D Z Yuan and D Y Han G Sound Vib. 424 1(2018)

    Article  ADS  Google Scholar 

  31. W Guo and C Dong Physica A. 416 90(2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. O L Han, T Yang and C H Zeng Physica A. 408 96(2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. K K Wang, L Ju and Y J Wang Chaos Soliton Fract. 108 166(2018)

    Article  ADS  Google Scholar 

  34. K K Wang, Y J Wang, H Ye and S H Li Int J Biomath. 12 1950048(2019)

    Article  MathSciNet  Google Scholar 

  35. R F Liu, W J Ma and J K Zeng Physica A. 517 562(2019)

    ADS  Google Scholar 

  36. G Hu, G Nicolis and C Nicolis Phys Rev A. 42 2030 (1990)

    Article  ADS  Google Scholar 

  37. J Li and J Zhang G Sound Vib. 401 139 (2017)

    Article  ADS  Google Scholar 

  38. G Steve, L H Ivan and L André Phys Rev E. 59 3970 (1999)

    Article  Google Scholar 

  39. C P Jesús, G O Jose and M Manuel Phys Rev Let. 91 210601 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61771085, 61671095, 61371164) and the Project of Key Laboratory of Signal and Information Processing of Chongqing (No. CSTC2009CA2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhou, L. & Zhang, T. Stochastic resonance in a monostable system driven by time-delayed feedback. Indian J Phys 95, 99–108 (2021). https://doi.org/10.1007/s12648-019-01676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01676-4

Keywords

PACS Nos

Navigation