Skip to main content
Log in

Stochastic resonance in a fractal dimensional bistable system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A fractal dimensional bistable system driven by multiplicative and additive noises and a periodic signal is investigated. We have derived analytically the fractal Fokker–Planck equation of the system, and obtained exact expression of its signal-to-noise ratio (SNR). Numerical results indicate that: (1) The curve of the SNR as a function of multiplicative noise intensity D or additive noise intensity Q exhibits a peak in the fractal dimensional system, i.e., a stochastic resonance phenomenon; (2) For the smaller values of D, the SNR first decreases then increases with increment of dimensionality \(\alpha \). At the integer dimension of \(\alpha =1\), response of the system to the weak periodic signal displays a minimum. Yet the SNR increases monotonically for the greater values of D. Our further investigation shows that the height of the potential barrier depends on the dimensionality, and influences on the SNR of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R Benzi, A Sutera and A Vulpiani J. Phys. A 14 L453 (1981)

    Article  ADS  Google Scholar 

  2. R Benzi, A Sutera and A Vulpiani Tellus 34 10 (1982)

    Article  ADS  Google Scholar 

  3. L Gammaitoni, P Hänggi, P Jung and F Marchesoni Rev. Mod. Phys. 70 223 (1998)

    Article  ADS  Google Scholar 

  4. J Wang, L Cao and D J Wu Chin. Phys. Lett. 19 1416 (2002)

    Article  ADS  Google Scholar 

  5. Y Jia, S N Yu and J R Li Phys. Rev. E. 62 1869 (2000)

    Article  ADS  Google Scholar 

  6. Y Jia, X P Zheng, X M Hu and J R Li Phys. Rev. E 63 031107 (2001)

    Article  ADS  Google Scholar 

  7. L R Nie, Y L Gong and D C Mei Chin. Phys. Lett. 26 100505 (2009)

    Article  ADS  Google Scholar 

  8. J H Li and Y X Han Phys. Rev. E 74 051115 (2006)

    Article  ADS  Google Scholar 

  9. A S Pikovsky and J Kurths Phys. Rev. Lett. 78 775(1997)

    Article  ADS  MathSciNet  Google Scholar 

  10. Z A Jimenez, B Marts and O Steinbock Phys. Rev. Lett. 102 244101 (2009)

    Article  ADS  Google Scholar 

  11. R N Mantegna and B Spagnolo Nuovo Cim. D 17 873 (1995)

    Article  ADS  Google Scholar 

  12. D T Gillespie J. Phys. Chem. 81 2340 (1977)

    Article  Google Scholar 

  13. J M G Vilar and R V Solé Phys. Rev. Lett. 80 4099 (1998)

    Article  ADS  Google Scholar 

  14. L R Nie and D C Mei Phys. Rev. E 77 031107 (2008)

    Article  ADS  Google Scholar 

  15. J C Cai, C J Wang and D C Mei Chin. Phys. Lett. 24 1162 (2007)

    Article  ADS  Google Scholar 

  16. A Caruso, M E Gargano, D Valenti, A Fiasconaro and B Spagnolo Fluct. Noise Lett. 5 L349 (2005)

    Article  Google Scholar 

  17. A Fiasconaro, A Ochab-Marcinek, B Spagnolo, and E Gudowska-Nowak Eur. Phys. J. B 65 435 (2008)

    Article  ADS  Google Scholar 

  18. A La Cognata, D Valenti, A A Dubkov, and B Spagnolo Phys. Rev. E 82 011121 (2010)

    Article  ADS  Google Scholar 

  19. R Löfstedt and S N Coppersmith, Phys. Rev. Lett. 72 1947 (1994)

    Article  ADS  Google Scholar 

  20. I Goychuk and P Hänggi, Phys. Rev. E 59 5137 (1999)

    Article  ADS  Google Scholar 

  21. M Grifoni and P Hänggi, Phys. Rev. Lett. 76 1611 (1996)

    Article  ADS  Google Scholar 

  22. X He Phys. Rev. B 43 2063 (1991)

    Article  ADS  Google Scholar 

  23. X He Phys. Rev. B 42 751 (1990)

    Google Scholar 

  24. B B Mandelbrot, Fractals: Form, Chance, and Dimension (San Francisco: W H Freeman & Co), p 1 (1977)

    MATH  Google Scholar 

  25. A A Dubkov and B Spagnolo, Fluct. Noise Lett. 5 L267 (2005)

    Article  Google Scholar 

  26. A A Dubkov and B Spagnolo, Acta Phys. Pol. 35 1745 (2007)

    ADS  Google Scholar 

  27. K G Wilson and M E Fisher Phys. Rev. Lett. 28 240(1972)

    Article  ADS  Google Scholar 

  28. C Tanguy, P Lefebvre, H Mathieu and R J Elliott J. Appl. Phys. 82 798(1997)

    Article  ADS  Google Scholar 

  29. I D Mikhailov, F J Betancur, R A Escorcia and J Sierra-Ortega Phys. Rev. B 67 115317(2003)

    Article  ADS  Google Scholar 

  30. Z Bak Phys. Rev. B 68 064511 (2003)

    Article  ADS  Google Scholar 

  31. A Thilagam Phys. Rev. B 56 4665 (1997)

    Article  ADS  Google Scholar 

  32. A Matos-Abiague Phys. Rev. B 65 165321 (2002)

    Article  ADS  Google Scholar 

  33. M R Tomasz and K Jacek Phys. Rev. B 56 4687 (1997)

    Article  Google Scholar 

  34. C Riva, R A Escorcia, A O Govorov and F M Peeters Phys. Rev. B 69 245306 (2004)

    Article  ADS  Google Scholar 

  35. O M Bruno, R O Plotze, M Falvo and M Castro Inf. Sci. 178 2722 (2008)

    Article  Google Scholar 

  36. S H Chen Phys. Rev. Lett 57 20 (1986)

    Google Scholar 

  37. B B Mandelbrot, D E Passoja and A J Paullay Nature 308 721 (1984)

    Article  ADS  Google Scholar 

  38. R N Mantegna and B Spagnolo Int. J. Bifurc. Chaos 8 783 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Group of Non-equilibrium Statistics (Grant No. 14078206), Kunming University of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.Y., Nie, L.R. Stochastic resonance in a fractal dimensional bistable system. Indian J Phys 91, 973–977 (2017). https://doi.org/10.1007/s12648-017-1003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1003-5

Keywords

PACS Nos.

Navigation