Skip to main content
Log in

Stochastic resonance in a time-delayed bistable system driven by trichotomous noise

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper studies the phenomenon of stochastic resonance (SR) in a bistable system with time delay driven by trichotomous noise. Firstly, a method of numerical simulation for trichotomous noise is presented and its accuracy is checked using normalized autocorrelation function. Then the effects of feedback strength and time delay on the system responses and signal-to-noise ratio (SNR) are studied. The results show that negative feedback strength is more beneficial than positive to promote SR. The effect of time delay on SR is related to the value of feedback strength. The influence of the signal amplitude and frequency on SR is also investigated. It is found that large amplitude and small frequency of the signal can promote the occurrence of SR. Finally, the influence of the amplitude and stationary probability of trichotomous noise on SNR are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H Haken Eur. Phys. J. B 18 545 (2000)

    Article  ADS  Google Scholar 

  2. D Wu and S Q Zhu Phys. Lett. A 372 5299 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. C Masoller Phys. Rev. Lett. 88 034102 (2002)

    Article  ADS  Google Scholar 

  4. C Masoller Phys. Rev. Lett. 90 020601 (2003)

    Article  ADS  Google Scholar 

  5. S Kim, S H Park and H-B Pyo Phys. Rev. Lett. 82 1620 (1999)

    Article  ADS  Google Scholar 

  6. T Ohira and Y Sato Phys. Rev. Lett. 82 2811 (1999)

    Article  ADS  Google Scholar 

  7. M K S Yeung and S H Strogatz Phys. Rev. Lett. 82 648 (1999)

    Article  ADS  Google Scholar 

  8. A A Dubkov, N V Agudov and B Spagnolo Phys. Rev. E 69 061103 (2004)

    Article  ADS  Google Scholar 

  9. R N Mantegna and B Spagnolo Int. J. Bifurc. Chaos 8 783 (1998)

  10. B Spagnolo, A A Dubkov and N V Agudov Eur. Phys. J. B 40 273 (2004)

    Article  ADS  Google Scholar 

  11. D Valenti, G Augello and B Spagnolo Eur. Phys. J. B 65 443 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. R Benzi, A Sutera and A Vulpiani J. Phys. A 14 L453 (1981)

    Article  ADS  Google Scholar 

  13. D X Li, W Xu, Y F Guo and Y Xu Phys. Lett. A 375 886 (2011)

    Article  ADS  Google Scholar 

  14. A Fiasconaro, A Ochab-Marcinek, B Spagnolo and E Gudowska-Nowak Eur. Phys. J. B 65 435 (2008)

    Article  ADS  Google Scholar 

  15. A La Cognata, D Valenti, A A Dubkov and B Spagnolo Phys. Rev. E 82 011121 (2010)

    Article  ADS  Google Scholar 

  16. A La Barbera and B Spagnolo Phys. A 314 120 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. X L Li and L J Ning Indian J. Phys. 89 189 (2015)

    Article  ADS  Google Scholar 

  18. X L Li and L J Ning Indian J. Phys. 90 91 (2016)

    Article  ADS  Google Scholar 

  19. M Perc and M Gosak New J. Phys. 10 053008 (2008)

    Article  ADS  Google Scholar 

  20. A Dinklage, C Wilke and T Klinger Phys. Plasmas 6 2968 (1999)

    Article  ADS  Google Scholar 

  21. B Peter Phys. Lett. A 225 179 (1997)

    Article  MathSciNet  Google Scholar 

  22. M Perc, M Gosak and S Kralj Soft Matter 4 1861 (2008)

    Article  ADS  Google Scholar 

  23. D Babic, C Schmitt, I Poberaj and C Bechinger Europhys. Lett. 67 158 (2004)

    Google Scholar 

  24. R N Mantegna, B Spagnolo, L Testa and M Trapanese J. Appl. Phys. 97 10E519 (2005)

    Article  Google Scholar 

  25. M Borromeo and F Marchesoni Europhys. Lett. 68 783 (2004)

    Article  ADS  Google Scholar 

  26. M Borromeo and F Marchesoni Phys. Rev. E 71 031105 (2005)

    Article  ADS  Google Scholar 

  27. S Fauve and F Heslot Phys. Lett. A 97 5 (1983)

    Article  ADS  Google Scholar 

  28. P Jung and P Hanggi Phys. Rev. A 44 8032 (1991)

    Article  ADS  Google Scholar 

  29. L Gammaitoni, P Hanggi, P Jung and F Marchesoni Eur. Phys. J. B 69 1 (2009)

    ADS  Google Scholar 

  30. M Borromeo and F Marchesoni Eur. Phys. J. B 69 23 (2009)

    Article  ADS  Google Scholar 

  31. R H Shao and Y Chen Phys. A 388 977 (2009)

    Article  ADS  Google Scholar 

  32. M J He, W Xu and Z K Sun Nonlinear Dyn. 79 1787 (2015)

    Article  Google Scholar 

  33. X Gu Eur. Phys. J. D 66 67 (2012)

    Article  ADS  Google Scholar 

  34. D Wu and S Q Zhu Phys. Lett. A 363 202 (2007)

    Article  ADS  Google Scholar 

  35. R Mankin, A Ainsaar and E Reiter Phys. Rev. E 60 1374 (1999)

    Google Scholar 

  36. T T Yang, H Q Zhang, Y Xu and W Xu Int. J. Nonlinear Mech. 67 42 (2014)

    Article  Google Scholar 

  37. H Q Zhang, T T Yang, Y Xu and W Xu Nonlinear Dyn. 76 649 (2014)

    Article  Google Scholar 

  38. H Q Zhang, T T Yang, Y Xu and W Xu Eur. Phys. J. B 88 125 (2015)

    ADS  Google Scholar 

  39. W Zhang and G H Di Nonlinear Dyn. 77 1589 (2014)

    Article  Google Scholar 

  40. F Guo, H Li and J Liu Phys. A 409 1 (2014)

    Article  ADS  Google Scholar 

  41. I L’Heureux and R Kapral J. Chem. Phys. 90 2453 (1989)

    Article  ADS  Google Scholar 

  42. D Barik, P K Ghosh and D S Ray J. Stat. Mech. 2006 P03010 (2006)

    Google Scholar 

  43. S H Li and J C Wu Fluct. Noise Lett. 14 1550019 (2015)

    Article  Google Scholar 

  44. P Liu and L J Ning Phys. A 441 32 (2016)

    Article  ADS  Google Scholar 

  45. H Yang and L J Ning Phys. Scr. 90 045202 (2015)

    Article  ADS  Google Scholar 

  46. S L Gao Eur. Phys. J. B 89 94 (2016)

    Article  ADS  Google Scholar 

  47. L C Du and D C Mei Indian J. Phys. 89 267 (2015)

    Article  ADS  Google Scholar 

  48. Y L Feng, J Zhu, M Zhang, L L Gao, Y F Liu and J M Dong Int. J. Mod Phys. B 30 11 (2016)

    Google Scholar 

  49. L S Tsimring and A Pikovsky Phys. Rev. Lett. 87 250602 (2001)

    Article  ADS  Google Scholar 

  50. S Mitaim and B Kosko Proc. IEEE 86 2152 (1998)

    Article  Google Scholar 

  51. R N Mantegna and B Spagnolo Phys. Rev. Rap. Comm. E 49 R1792 (1994)

  52. R N Mantegna, B Spagnolo and M Trapanese Phys. Rev. E 63 011101 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Saleem Riaz of Northwestern Polytechnical University, China, for valuable discussions. Bingchang Zhou’s contribution was supported by National Natural Science Foundation of China (Grant No. 11102155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingchang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Lin, D. Stochastic resonance in a time-delayed bistable system driven by trichotomous noise. Indian J Phys 91, 299–307 (2017). https://doi.org/10.1007/s12648-016-0925-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0925-7

Keywords

PACS Nos.

Navigation