Skip to main content

Advertisement

Log in

Modulation of Postnatal Neurogenesis by Perinatal Asphyxia: Effect of D1 and D2 Dopamine Receptor Agonists

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Perinatal asphyxia (PA) is associated to delayed cell death, affecting neurocircuitries of basal ganglia and hippocampus, and long-term neuropsychiatric disabilities. Several compensatory mechanisms have been suggested to take place, including cell proliferation and neurogenesis. There is evidence that PA can increase postnatal neurogenesis in hippocampus and subventricular zone (SVZ), modulated by dopamine, by still unclear mechanisms. We have studied here the effect of selective dopamine receptor agonists on cell death, cell proliferation and neurogenesis in organotypic cultures from control and asphyxia-exposed rats. Hippocampus and SVZ sampled at 1–3 postnatal days were cultured for 20–21 days. At day in vitro (DIV) 19, cultures were treated either with SKF38393 (10 and 100 µM, a D1 agonist), quinpirole (10 µM, a D2 agonist) or sulpiride (10 μM, a D2 antagonist) + quinpirole (10 μM) and BrdU (10 μM, a mitosis marker) for 24 h. At DIV 20–21, cultures were processed for immunocytochemistry for microtubule-associated protein-2 (MAP-2, a neuronal marker), and BrdU, evaluated by confocal microscopy. Some cultures were analysed for cell viability at DIV 20–21 (LIVE/DEAD kit). PA increased cell death, cell proliferation and neurogenesis in hippocampus and SVZ cultures. The increase in cell death, but not in cell proliferation, was inhibited by both SKF38393 and quinpirole treatment. Neurogenesis was increased by quinpirole, but only in hippocampus, in cultures from both asphyxia-exposed and control-animals, effect that was antagonised by sulpiride, leading to the conclusion that dopamine modulates neurogenesis in hippocampus, mainly via D2 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson K, Blum M, Chen Y, Eneroth P, Gross J, Herrera-Marschitz M, Bjelke B, Bolme P, Diaz R, Jamison L, Loidl F, Ungethüm U, Åström G, Ögren SÖ (1995) Perinatal asphyxia increases bFGF mRNA levels and DA cell body number in mesencephalon of rats. NeuroReport 6(2):375–378

    Article  CAS  PubMed  Google Scholar 

  • Aponso PM, Faull RL, Connor B (2008) Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson’s disease. Neuroscience 151(4):1142–1153

    Article  CAS  PubMed  Google Scholar 

  • Baker S, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20(2):575–579

    Article  PubMed  Google Scholar 

  • Bartley J, Soltau T, Wimborne H, Kin S, Martin-Studdard A, Hess D, Hill W, Waller J, Carroll J (2005) BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury. BCM Neurosci 6:15

    Google Scholar 

  • Bentivoglio M, Morelli M (2005) The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. Handbook of Chemical Neuroanatomy 21:1–107

    Article  CAS  Google Scholar 

  • Borta A, Höglinger GU (2007) Dopamine and adult neurogenesis. J Neurochem 100(3):587–595

    Article  CAS  PubMed  Google Scholar 

  • Castro NG, de Mello MC, de Mello FG, Aracava Y (1999) Direct inhibition of the N-methyl-D-aspartate receptor channel by dopamine and (+)-SKF38393. Br J Pharmacol 126(8):1847–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Hillefors-Berglund M, Herrera-Marschitz M, Bjelke B, Gross J, Andersson K, von Euler G (1997a) Perinatal asphyxia induces long-term changes in dopamine D1, D2, and D3 receptor binding in the rat brain. Exp Neurol 146(1):74–80

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Engindawork E, Loidl F, Dell’Anna E, Goiny M, Lubec G, Andersson K, Herrera-Marschitz M (1997b) Short- and long-term effects of perinatal asphyxia on monoamine, amino acid and glycolysis product levels measured in the basal ganglia of the rat. Brain Res Dev Brain Res 104(1–2):19–30

    Article  CAS  PubMed  Google Scholar 

  • Choi Ji, Chen Y, Hamel E, Bruce G (2006) Brain hemodynamic changes mediated by dopamine receptors: role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. NeuroImage 30(3):700–712

    Article  PubMed  Google Scholar 

  • Coronas V, Bantubungi K, Fombonne J, Krantic S, Schiffmann SN, Roger M (2004) Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the postnatal subventricular zone. J Neurochem 91(6):1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Daval JL, Vert P (2004) Apoptosis and neurogenesis after transient hypoxia in the developing rat brain. Semin Perinatol 28(4):257–263

    Article  PubMed  Google Scholar 

  • Davoodi N, te Riele P, Langlois X (2014) Examining dopamine D3 receptor occupancy by antipsychotic drugs via [3H]7-OH-DPAT ex vivo autoradiography and its cross-validation via c-fos immunohistochemistry in the rat brain. Eur J Pharmacol 740:669–675

    Article  CAS  PubMed  Google Scholar 

  • Dawirs RR, Hildebrandt K, Teuchert-Noodt G (1998) Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 105(2–3):317–327

    Article  CAS  PubMed  Google Scholar 

  • Decker MJ, Hue GE, Caudle WM, Miller GW, Keating GL, Rye DB (2003) Episodic neonatal hypoxia evokes executive dysfunction and regionally specific alterations in markers of dopamine signaling. Neuroscience 117(2):417–425

    Article  CAS  PubMed  Google Scholar 

  • Dell’Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, Herrera-Marschitz M (1997) Delayed neuronal death following perinatal asphyxia in rat. Exp Brain Res 115(1):105–115

    Article  PubMed  Google Scholar 

  • Díaz J, Ridray S, Mignon V, Griffon N, Schawartz JC, Sokoloff P (1997) Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J Neurosci 17(11):4282–4292

    PubMed  Google Scholar 

  • Douglas-Escobar M, Weiss MD (2015) Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 169(4):397–403

    Article  PubMed  Google Scholar 

  • Emsley J, Hagg T (2003) Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp Neurol 183(2):298–310

    Article  CAS  PubMed  Google Scholar 

  • Fancellu R, Armentero MT, Nappi G, Blandini F (2003) Neuroprotective effects mediated by dopamine receptor agonists against malonate-induced lesion in the rat striatum. Neurol Sci 24(3):180–181

    Article  CAS  PubMed  Google Scholar 

  • Farías JG, Herrera EA, Carrasco-Pozo C, Sotomayor-Zárate R, Cruz G, Morales P, Castillo RL (2016) Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther 158:1–23

    Article  PubMed  Google Scholar 

  • Giros B, Sokoloff P, Martres MP, Riou JF, Emorine LJ, Schwartz JC (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342(6252):923–926

    Article  CAS  PubMed  Google Scholar 

  • Goffin D, Aarum J, Schroeder J, Jovanovic J, Chuang T (2008) D1-like dopamine receptors regulate GABAA receptor function to modulate hippocampal neural progenitor cell proliferation. J Neurochem 107(4):964–975

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SK, Joyce JN (1994) D2 receptor expression in hippocampus and parahippocampal cortex of rat, cat, and human in relation to tyrosine hydroxylase-immunoreactive fibers. Hippocampus 4(3):354–373

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Müller I, Chen Y, Elizalde M, Leclere N, Herrera-Marschitz M, Andersson K (2000) Perinatal asphyxia induces region-specific long-term changes in mRNA levels of tyrosine hydroxylase and dopamine D(1) and D(2) receptors in rat brain. Brain Res Mol Brain Res 79(1–2):110–117

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Andersson K, Chen Y, Muller I, Andreeva N, Herrera-Marschitz M (2005) Effect of perinatal asphyxia on tyrosine hydroxylase and D2 and D1 dopamine receptor mRNA levels expressed during early postnatal development in rat brain. Brain Res Mol Brain Res 134(2):275–281

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, Allende C, Lisboa F, Cunich G, Jara-Cavieres A, Neira T, Gutierrez-Hernandez MA, Gonzalez-Lira V, Simola N, Schmitt A, Morelli M, Tasker RA, Gebicke-Haerter PJ (2011) Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 19(4):603–627

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Marschitz M, Neira-Peña T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Pérez R, Muñoz V, Gutierrez-Hernández M, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter P (2014) Perinatal asphyxia: CNS development and deficits with delayed onset. Front Neurosci 26:8–47

    Google Scholar 

  • Hiramoto T, Kanda Y, Satoh Y, Takishima K, Watanabe Y (2007) Dopamine D2 receptor stimulation promotes the proliferation of neural progenitor cells in adult mouse hippocampus. NeuroReport 18(7):659–664

    Article  CAS  PubMed  Google Scholar 

  • Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caill I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735

    Article  PubMed  Google Scholar 

  • Höglinger GU, Arias-Carrión O, Ipach B, Oertel WH (2014) Origin of the dopaminergic innervation of adult neurogenic areas. J Comp Neurol 522(10):2336–2348

    Article  PubMed  Google Scholar 

  • Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47(1):133–178

    CAS  PubMed  Google Scholar 

  • Ingvar M, Lindvall O, Stenevi U (1983) Apomorphine-induced changes in local cerebral blood flow in normal rats and after lesions of the dopaminergic nigrostriatal bundle. Brain Res 262(2):259–265

    Article  CAS  PubMed  Google Scholar 

  • Inta D, Cameron HA, Gass P (2015) New neurons in the adult striatum: from rodents to humans. Trends Neurosci 38(9):517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. ProcNatlAcad Sci USA 98(8):4710–4715

    Article  CAS  Google Scholar 

  • Keefe KA, Gerfen CR (1995) D1-D2 dopamine receptor synergy in striatum: effects of intrastriatal infusions of dopamine agonists and antagonists on immediate early gene expression. Neuroscience 66(4):903–913

    Article  CAS  PubMed  Google Scholar 

  • Khaindrava V, Salin P, Melon C, Ugrumov M, Kerkerian-Le-Goff L, Daszuta A (2011) High frequency stimulation of the subthalamic nucleus impact adult neurogenesis in a rat model of Parkinson’s disease. Neurobiol Dis 42(3):284–291

    Article  PubMed  Google Scholar 

  • Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25(24):5815–5823

    Article  CAS  PubMed  Google Scholar 

  • Klawitter V, Morales P, Bustamante D, Gomez-Urquijo S, Hökfelt T, Herrera-Marschitz M (2007) Plasticity of basal ganglia following perinatal asphyxia: neuroprotection by nicotinamide. Exp Brain Res 180(1):139–152

    Article  CAS  PubMed  Google Scholar 

  • Krimer L, Muly E, Williams G, Goldman-Rakic P (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1(4):286–289

    Article  CAS  PubMed  Google Scholar 

  • Lao C, Lu C, Chen J (2013) Dopamine receptor activation promotes neural stem/progenitor cell proliferation through AKT and ERK1/2 pathways and expands type-B and -C cells in adult subventricular zone. Glia 61(4):475–489

    Article  PubMed  Google Scholar 

  • Lidow MS, Rakic P (1995) Neurotransmitter receptors in the proliferative zones of the developing primate occipital lobe. J Comp Neurol 360(3):393–402

    Article  CAS  PubMed  Google Scholar 

  • Lindgren N, Xu ZQ, Herrera-Marschitz M, Haycock J, Hökfelt T, Fisone G (2001) Dopamine D(2) receptors regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum. Eur J Neurosci 13(4):773–780

    Article  CAS  PubMed  Google Scholar 

  • Lindgren N, Usiello A, Goiny M, Haycock J, Erbs E, Greengard P, Hokfelt T, Borrelli E, Fisone G (2003) Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci USA 100(7):4305–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XH, Kato H, Chen T, Kato K, Itoyama Y (1995) Bromocriptine protects against delayed neuronal death of hippocampal neurons following cerebral ischemia in the gerbil. J Neurol Sci 129(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glía. Proc Natl Acad Sci USA 90:2074–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Pérez SJ, Morales-Villagrán A, Medina-Ceja L (2015) Effect of perinatal asphyxia and carbamazepine treatment on cortical dopamine and DOPAC levels. J Biomed Sci 22:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Low JA (1997) Intrapartum fetal asphyxia: definition, diagnosis, and classification. Am J Obset Gynecol 176(5):957–959

    Article  CAS  Google Scholar 

  • Marriott AL, Rojas-Mancilla E, Morales P, Herrera-Marschitz M, Tasker RA (2016) Models of progressive neurological dysfunction originating early in life. Prog Neurobiol. doi:10.1016/j.pneurobio.2015.10.001

    Google Scholar 

  • Morales P, Klawitter V, Johansson S, Huaiquin P, Barros VG, Avalos AM, Fiedler J, Bustamante D, Gomez-Urquijo S, Goiny M, Herrera-Marschitz M (2003) Perinatal asphyxia impairs connectivity and dopamine neurite branching in organotypic triple culture from rat substantia nigra, neostriatum and neocortex. Neurosci Lett 348(3):175–179

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Reyes P, Klawitter V, Huaiquín P, Bustamante D, Fiedler J, Herrera-Marschitz M (2005) Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 135(2):421–431

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Huaiquín P, Bustamante D, Fiedler JL, Herrera-Marschitz M (2007) Perinatal asphyxia induces neurogenesis in hippocampus: an organotypic culture study. Neurotox Res 12(1):81–84

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Fiedler JL, Andrés S, Berrios C, Huaiquín P, Bustamante D, Cardenas S, Parra E, Herrera-Marschitz M (2008) Plasticity of hippocampus following perinatal asphyxia: effects on markers for apoptosis and neurogenesis evaluated in vivo seven days after birth. J Neurosci Res 86:2650–2662

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Bustamante D, Espina-Marchant P, Neira-Peña T, Gutiérrez-Hernández M, Allende-Castro C, Rojas-Mancilla E (2011) Pathophysiology of perinatal asphyxia: can we predict and improve individual outcomes? EPMA 2(2):211–230

    Article  Google Scholar 

  • Mori M, Jefferson JJ, Hummel M, Garbe DS (2008) CNTF: a putative link between dopamine D2 receptors and neurogenesis. J Neurosci 28(23):5867–5869

    Article  CAS  PubMed  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110(4):429–441

    Article  CAS  PubMed  Google Scholar 

  • Neira-Pena T, Rojas-Mancilla E, Munoz-Vio V, Perez R, Gutiérrez-Hernández M, Bustamante D, Morales P, Hermoso MA, Gebicke-Haerter P, Herrera-Marschitz M (2015) Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β, and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration. Neurotox Res 27(4):453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisenbaum ES, Mermelstein PG, Wilson CJ, Surmeier DJ (1998) Selective blockade of a slowly inactivating potassium current in striatal neurons by (±) 6-chloro-APB hydrobromide (SKF82958). Synapse 29(3):213–224

    Article  CAS  PubMed  Google Scholar 

  • Nishibayashi S, Asanuma M, Kohno M, Gómez-Vargas M, Ogawa N (1996) Scavenging effects of dopamine agonists on nitric oxide radicals. J Neurochem 67(5):2208–2211

    Article  CAS  PubMed  Google Scholar 

  • O’Neill MJ, Hicks CA, Ward MA, Cardwell GP, Reymann JM, Allain H, Bentué-Ferrer D (1998) Dopamine D2 receptor agonists protect against ischaemia-induced hippocampal neurodegeneration in global cerebral ischaemia. Eur J Pharmacol 352(1):37–46

    Article  PubMed  Google Scholar 

  • Ohta K, Kuno S, Inoue S, Ikeda E, Fujinami A, Ohta M (2010) The effect of dopamine agonists: the expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J Neurol Sci 291(1–2):12–16

    Article  CAS  PubMed  Google Scholar 

  • Ohtani N, Goto T, Waeber C, Bhide PG (2003) Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci 23(7):2840–2850

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Keeffe GC, Barker RA, Caldwell MA (2009) Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle 8(18):2888–2894

    Article  PubMed  Google Scholar 

  • Ong J, Plane JM, Parent JM, Silverstein FS (2005) Hypoxic-ischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal rat. Pediatr Res 58(3):600–606

    Article  PubMed  Google Scholar 

  • Park JH, Enikolopov G (2010) Transient elevation of adult hippocampal neurogenesis after dopamine depletion. ExpNeurol 222(2):267–276

    CAS  Google Scholar 

  • Pastuzko A (1994) Metabolic responses of the dopaminergic system during hypoxia in newborn brain. Biochem Med Metab Biol 51(1):1–15

    Article  Google Scholar 

  • Plane JM, Liu R, Wang TW, Silverstein FS, Parent JM (2004) Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis 16(3):585–595

    Article  CAS  PubMed  Google Scholar 

  • Reuss B, Unsicker K (2000) Survival and differentiation of dopaminergic mesencephalic neurons are promoted by dopamine-mediated induction of FGF-2 in striatal astroglial cells. Mol Cell Neurosci 16(6):781–792

    Article  CAS  PubMed  Google Scholar 

  • Robertson GS, Fibiger HC (1992) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46(2):315–328

    Article  CAS  PubMed  Google Scholar 

  • Robertson GS, Jian M (1995) D1 and D2 dopamine receptors differentially increase fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain. Neuroscience 64(4):1019–1034

    Article  CAS  PubMed  Google Scholar 

  • Robertson HA, Paul ML, Moratalla R, Graybiel AM (1991) Expression of the immediate early gene c-fos in basal ganglia: induction by dopaminergic drugs. Can J Neurol Sci 18:380–383

    Article  CAS  PubMed  Google Scholar 

  • Roceri M, Molteni R, Fumagalli F, Racagni G, Gennarelli M, Corsini G, Maggio R, Riva M (2001) Stimulatory role of dopamine on fibroblast growth factor-2 expression in rat striatum. J Neurochem 76(4):990–997

    Article  CAS  PubMed  Google Scholar 

  • Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 36(6):336–342

    Article  CAS  PubMed  Google Scholar 

  • Sabir H, Cowan FM (2015) Prediction of outcome methods assessing short- and long-term outcome after therapeutic hypothermia. SemFetal Neonatal Med 20(2):115–121

    Article  Google Scholar 

  • Sawada H, Ibi M, Kihara T, Urushitani M, Akaike A, Kimura J, Shimohama S (1998) Dopamine D2-type agonists protect mesencephalic neurons from glutamate neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress. Ann Neurol 44(1):110–119

    Article  CAS  PubMed  Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32(3):229–313

    CAS  PubMed  Google Scholar 

  • Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopaminergic neurons and their striatal targets. J Neurosci 14(1):88–106

    CAS  PubMed  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347(6289):146–151

    Article  CAS  PubMed  Google Scholar 

  • Vaarmann A, Kovac S, Holmström KM, Gandhi S, Abramov AY (2013) Dopamine protects neurons against glutamate-induced excitotoxicity. Cell Death Dis 4:e455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallar L, Muca C, Magni M, Albert P, Bunzow J, Meldolesi J, Civelli O (1990) Differential coupling of dopaminergic D-2 receptors expressed in different cell types. J Biol Chem 265:10320–10326

    CAS  PubMed  Google Scholar 

  • van Kampen JM, Robertson HA (2005) A possible role for dopamine D3 receptor stimulation in the induction of neurogenesis in the adult rat substantia nigra. Neuroscience 136(2):381–386

    Article  PubMed  Google Scholar 

  • van Kampen JM, Hagg T, Robertson HA (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D receptor stimulation. Eur J Neurosci 19(9):2377–2387

    Article  PubMed  Google Scholar 

  • Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB (1985) Morphological evidence for a dopaminergic terminal field in hippocampal formation of young and adult rat. Neuroscience 14(4):1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Voorn P, Kalsbeck A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25(3):857–887

    Article  CAS  PubMed  Google Scholar 

  • Wassink G, Gunn ER, Drury PP, Bennet L, Gunn AJ (2014) The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci 8:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang P, Arnold SA, Habas A, Hetman M, Hagg T (2008) Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J Neurosci 28(9):2231–2241

  • Zackheim JA, Abercrombie ED (2001) Decreased striatal dopamine efflux after intrastriatal application of benzazepine-class D1 agonists is not mediated via dopamine receptors. Brain Res Bull 54(6):603–607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Contract Grant sponsors: FONDECYT-Chile 1110263; 1120079; 1170146; 1170074; Millenium Initiative-2010 BNI (P09-015-F; Chile). ATB (#21151232), RPL (#1110263), CLR (#21140281) are CONICYT PhD Fellows; VVM is a MECESUP (UCH0714) fellow. The skillful technical support by Mr Juan Santibanez, Ms Carmen Almeyda is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Morales.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest on any section of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-Bustos, A., Perez-Lobos, R., Vío, V. et al. Modulation of Postnatal Neurogenesis by Perinatal Asphyxia: Effect of D1 and D2 Dopamine Receptor Agonists. Neurotox Res 31, 109–121 (2017). https://doi.org/10.1007/s12640-016-9669-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9669-6

Keywords

Navigation