Skip to main content

Molecular, Cellular, and Behavioural Effects Produced by Perinatal Asphyxia: Protection by Poly (ADP-Ribose) Polymerase 1 (PARP-1) Inhibition

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Perinatal asphyxia implies oxygen interruption at birth, leading to death whenever reoxygenation is not promptly reestablished. Reoxygenation triggers a cascade of biochemical events for restoring function at the cost of improper homeostasis. The effects observed long after perinatal asphyxia have been explained by overexpression of sentinel proteins, such as poly(ADP-ribose) polymerase 1 (PARP-1), competing for NAD+ during reoxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia also induces transcriptional activation of proinflammatory factors, including NFκB, and its subunit p65, whose translocation to the nucleus was found here, is significantly increased in brain tissue from asphyxia-exposed animals, in tandem with PARP-1 overactivation, suggesting that PARP-1 inhibition downregulates the expression of proinflammatory cytokines. Indeed, TNF-α and IL-1β were found to be increased 8 and 24 h after perinatal asphyxia in mesencephalon and hippocampus of rat neonates.

The possible neuroprotection effect of nicotinamide has been studied in an experimental model of global perinatal asphyxia in rats, inducing the insult by immersing rat fetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, immediately treated, or given to surrogate dams for nursing, pending further experiments. Systemic administration of nicotinamide was found to rapidly distribute into the brain reaching a steady-state concentration sufficient to inhibit PARP-1 activity for several hours. Nicotinamide prevented several of the long-term consequences elicited by perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

Apoptosis-inducing factor

AN:

Nicotinamide-treated, asphyxia-exposed rats

AS:

Asphyxia exposed, saline treated

ATP:

Adenosine triphosphate

BAD:

Bcl-2-associated death factor

BAX:

Bcl-2-associated X factor

BBB:

Blood–brain barrier

bFGF:

Basic fibroblast growth factor

CNS:

Central nervous system

COX-2:

Cyclooxygenase-2

CREB:

cAMP-response element-binding protein

CS:

Caesarean delivered, saline treated

DG:

Dentate gyros

DNMT1:

DNA(cytosine-5-)-methyl transferase 1

DPQ:

3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone

DR2313:

2-methyl-3,5,7,8-tetrahydrothiopyranol[4,3-d]pyrimidine-4-one

E2F:

Family of DNA-binding transcription factors

EPO:

Erythropoietin

ERCC2:

Excision repair cross-complementing rodent repair group 2

ERK:

Extracellular signal-regulated kinases

FOXO:

Subclass of forkhead O family of transcription factors

FR247304:

5-Chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl) propyl]-4(3H)-quinazoline

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HDAC:

Histone deacetylases

HIF:

Hypoxia-inducible factor

HRE:

Hypoxia-responsive elements

ICAM-1:

Intercellular adhesion molecule-1

IGF-1:

Insulin-like growth factor-1

IL-1β:

Interleukin-1β

iNOS:

Inducible nitric oxide synthase

IQ:

Intelligence quotient

IκB:

Inhibitor of kappa B protein

Ku70:

Protein encoded by the XRCC1 gene, required for the nonhomologous end joining pathway of DNA repair

LIG3:

DNA ligase 3

LPS:

Lipopolysaccharides

NAD+:

Nicotinamide adenine dinucleotide

NADH:

Reduced nicotinamide adenine dinucleotide

NFκB:

Nuclear factor-κB

ONO-1924H:

N-3-(4-oxo-3,4-dihydrophthalazin-1-yl)phenyl-4-(morpholin-4-yl) butanamide methane sulfonate monohydrate

P:

Postnatal day

p300:

Histone acetyltransferase p300

p65:

Transcription factor p65

PAR:

Poly(ADP-ribose) polymers

PARG:

Poly(ADP-ribose) glycohydrolase

PARPs:

Poly(ADP-ribose) polymerases

PARylated PARP:

Poly-ADP-ribosylated PARP

PBS:

Phosphate-buffered saline

PCAF:

P300/CBP-associated factor

PCr:

Phosphocreatine

PHD:

Prolyl hydroxylase domain

PJ34:

[N-(6-oxo-5,6-dihydrophenanthridin-2-yL)-N,N-dimethylacetamide.HCl]

POLB, DNA:

Polymerase-β

ROS:

Reactive oxygen species

SIRT:

Sirtuin

SRY:

Sex-determining region Y

Strep-HRP:

Streptavidin-horseradish peroxidase

SVZ:

Subventricular zone

TH:

Tyrosine hydroxylase

TNF:

Tumor necrosis factor

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labelling

VEGF:

Vascular endothelial factor

XRCC1:

X-ray cross-complementing factor 1

References

  • Abdelkarim, G. E., Gertz, K., Harms, C., Katchanov, J., Dimagl, U., Szabo, C., & Endres, M. (2001). Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. International Journal of Molecular Medicine, 7, 255–260.

    CAS  Google Scholar 

  • Akil, M., Edgar, C. L., Pierri, J. N., Casali, S., & Lewis, D. A. (2000). Decreased density of tyrosine hydroxylase-immunoreactive axons in the entorhinal cortex of schizophrenic subjects. Biological Psychiatry, 47, 361–370.

    Article  CAS  Google Scholar 

  • Alano, C. C., Kauppinen, T. M., Valls, A. V., & Swanson, R. A. (2006). Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proceedings of the National Academy Sciences USA, 103, 9685–9690.

    Article  CAS  Google Scholar 

  • Allende-Castro, C., Espina-Marchant, P., Bustamante, D., Rojas-Mancilla, E., Neira, T., Gutierrez-Hernandez, M. A., Esmar, D., Valdes, J. L., Morales, P., Gebicke-Haerter, P. J., & Herrera-Marschitz, M. (2012). Further studies on the hypothesis of PARP-1 inhibition as a strategy for lessening the long-term effects produced by perinatal asphyxia: Effects of nicotinamide and theophylline on PARP-1 activity in brain and peripheral tissue. Neurotoxicity Research, 22, 79–90.

    Article  CAS  Google Scholar 

  • Amé, J.-C., Spenlehauer, C., & de Murcia, G. (2004). The PARP superfamily. BioEssays, 26, 882–893.

    Article  Google Scholar 

  • Andersson, K., Bjelke, B., Bolme, P., & Ögren, S. O. (1992). Asphyxia-induced lesion of the rat hippocampus (CA1, CA3) and the nigro-striatal dopamine system. In J. Gross Hypoxia and Ischemia. CNS. Wissenschafliche Publikationen der Humboldt-Universität zu Berlin, B. Medizin, 41, 71–76.

    Google Scholar 

  • Arvin, K. L., Han, B. H., Du, Y., Lin, S. Z., Paul, S. M., & Holtzman, D. M. (2002). Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Annals of Neurology, 52, 54–61.

    Article  CAS  Google Scholar 

  • Bachus, S. E., Hyde, T. M., Herman, M. M., Egan, M. F., & Kleinman, J. E. (1997). Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. Journal of Psychiatric Research, 31, 233–256.

    Article  CAS  Google Scholar 

  • Bartley, J., Soltau, T., Wimborne, H., Kim, S., Martin-Sttudard, A., Hess, D., Hill, W., Waller, J., & Carrol, J. (2005). BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury. BMC Neuroscience, 6, 15.

    Article  Google Scholar 

  • Basovich, S. N. (2010). The role of hypoxia in mental development and in the treatment of mental disorders. Bioscience Trends, 4, 288–296.

    Google Scholar 

  • Berger, N. A. (1985). Poly (ADP-ribose) in the cellular response to DNA damage. Radiation Research, 1001, 4–15.

    Article  Google Scholar 

  • Bjelke, B., Andersson, K., Ögren, S. O., & Bolme, P. (1991). Asphyctic lesion: Proliferation of tyrosine hydroxylase immunoreactive nerve cell bodies in the rat substantia nigra and functional changes in dopamine transmission. Brain Research, 543, 1–9.

    Article  CAS  Google Scholar 

  • Boksa, P., Krishnamurthy, A., & Brooks, W. (1995). Effects of a period of asphyxia during birth on spatial learning in the rat. Pediatric Research, 37, 489–496.

    Article  CAS  Google Scholar 

  • Bustamante, D., Goiny, M., Åström, G., Gross, J., Andersson, K., & Herrera-Marschitz, M. (2003). Nicotinamide prevents the long-term effects of perinatal asphyxia on basal ganglia monoamine systems in the rat. Experimental Brain Research, 148, 227–232.

    Article  CAS  Google Scholar 

  • Bustamante, D., Morales, P., Torres-Pereyra, J., Goiny, M., & Herrera-Marschitz, M. (2007). Nicotinamide prevents the effect of perinatal asphyxia on dopamine release evaluated with in vivo microdialysis three months after birth. Experimental Brain Research, 177, 358–369.

    Article  CAS  Google Scholar 

  • Chen, Y., Ögren, S. O., Bjelke, B., Bolme, P., Eneroth, P., Gross, J., Loidl, F., Herrera-Marschitz, M., & Andersson, K. (1995). Nicotine treatment counteracts perinatal asphyxia-induced changes in the mesostriatal/limbic dopamine systems and in motor behaviour in the four-week old male rat. Neuroscience, 68, 531–538.

    Article  CAS  Google Scholar 

  • Chiappe-Gutierrez, M., Kitzmueller, E., Labudova, O., Fuerst, G., Hoeger, H., Hardmeier, R., Nohl, H., Gille, L., & Lubec, B. (1998). mRNA levels of the hypoxia inducible factor (HIF-1) and DNA repair genes in perinatal asphyxia of the rat. Life Sciences, 63, 1157–1167.

    Article  CAS  Google Scholar 

  • Cohen-Armon, M., Visochek, L., Rozendal, D., Kalal, A., Geistrikh, I., Klein, R., Bendetz-Nezer, S., Yao, Z., & Seger, R. (2007). DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: A link to histone acetylation. Molecular Cell, 25, 297–308.

    Article  CAS  Google Scholar 

  • Correia, S. C., & Moreira, P. I. (2010). Hypoxia-inducible factor 1: A new hope to counteract neurodegeneration? Journal of Neurochemistry, 112, 1–12.

    Article  CAS  Google Scholar 

  • De Hann, M., Wyatt, J. S., Vargha-Khadem, F., Gadian, D., & Mishki, M. (2006). Brain and cognitive behavioural development after asphyxia at term birth. Developmental Science, 9, 350–358.

    Article  Google Scholar 

  • Dell’Anna, E., Calzolari, S., Milinari, M., Luvone, L., & Calimici, R. (1991). Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in the developing rats. Behavioural Brain Research, 45, 125–134.

    Article  Google Scholar 

  • Dell’Anna, E., Chen, Y., Engidawork, E., Andersson, K., Lubec, G., Luthman, J., & Herrera-Marschitz, M. (1997). Delayed neuronal death following perinatal asphyxia in rat. Experimental Brain Research, 115, 105–115.

    Article  Google Scholar 

  • Denker, S., Ji, S., Lee, S. Y., Dingman, A., Derugin, N., Wendland, M., & Vexler, Z. S. (2007). Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. Journal of Neurochemistry, 100, 893–904.

    Article  CAS  Google Scholar 

  • Dommergues, M. A., Plaisant, F., Verney, C., & Gressens, P. (2003). Early microglia activation following neonatal excitotoxic brain damage in mice: A potential target for neuroprotection. Neuroscience, 121, 619–628.

    Article  CAS  Google Scholar 

  • du Plessis, A. J., & Volpe, J. J. (2002). Perinatal brain injury in the preterm and term newborn. Current Opinion in Neurology, 15, 151–157.

    Article  Google Scholar 

  • Ducrocq, S., Benjelloun, N., Plotkine, M., Ben-Ari, Y., & Charriaut-Marlangue, C. (2000). Poly(ADP-ribose) synthase inhibition reduces ischemic injury and inflammation in neonatal rat brain. Journal of Neurochemistry, 74, 2504–2511.

    Article  CAS  Google Scholar 

  • Ellenberger, T., & Tomkinson, A. E. (2008). Eukaryotic DNA ligases: Structural and functional insights. Annual Review of Biochemistry, 77, 313–338.

    Article  CAS  Google Scholar 

  • Engelhardt, B. (2003). Development of the blood–brain barrier. Cell and Tissue Research, 314, 119–129.

    Article  CAS  Google Scholar 

  • Engidawork, E., Loidl, F., Chen, Y., Kohlhauser, C., Stoeckler, S., Dell’Anna, E., Lubec, B., Lubec, G., Goiny, M., Gross, J., Andersson, K., & Herrera-Marschitz, M. (2001). Comparison between hypothermia and glutamate antagonism treatments on the immediate outcome of perinatal asphyxia. Experimental Brain Research, 138, 375–383.

    Article  CAS  Google Scholar 

  • Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. I: Behavioral data. Behavioural Brain Research, 31, 47–59.

    Article  CAS  Google Scholar 

  • Fähling, M. (2009). Surviving hypoxia by modulation of mRNA translation rate. Journal of Cellular and Molecular Medicine, 13, 2770–2779.

    Article  Google Scholar 

  • Foster, G. A. (1998). Chemical neuroanatomy of the prenatal rat brain. Oxford University Press.

    Google Scholar 

  • Gagne, J.-P., Isabelle, M., Lo, K. S., Bourassa, S., Hendzel, M. J., Dawson, V. L., Daeson, T. M., & Poirier, G. G. (2008). Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Research, 36, 6959–6976.

    Article  CAS  Google Scholar 

  • Geraets, L., Moonen, H. J. J., Wouters, E. F. M., Bast, A., & Hageman, G. J. (2006). Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations. Biochemical Pharmacology, 72, 902–910.

    Article  CAS  Google Scholar 

  • Girard, S., Kadhim, H., Roy, M., Lavoie, K., Brochu, M. E., Larouche, A., & Sebire, G. (2009). Role of perinatal inflammation in cerebral palsy. Pediatric Neurology, 40, 168–174.

    Article  Google Scholar 

  • Green, A., Prager, A., & Stoudt, M. D. (1992). Relationships between DNA damage and the survival of radiosensitive mutant Chinese hamster cell lines exposed to gamma-radiation. Part 1: Intrinsic radiosensitivity. International Journal of Radiation Biology, 61, 465–472.

    Article  CAS  Google Scholar 

  • Green, K. N., Steffan, J. S., Martinez-Coria, H., Sun, X., Schreiber, S. S., Thompson, L. M., & LaFerla, F. M. (2008). Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. The Journal of Neuroscience, 28, 11500–11510.

    Article  CAS  Google Scholar 

  • Hagberg, H., Gilland, E., Bona, E., Hanson, L. A., Hahlin-Zoric, M., Biennow, M., Holst, M., McRae, A., & Söder, O. (1996). Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatric Research, 40, 603–609.

    Article  CAS  Google Scholar 

  • Hamby, A. M., Suh, S. W., Kauooinen, T. M., & Swanson, R. A. (2007). Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke, 38, 632–636.

    Article  CAS  Google Scholar 

  • Herrera-Marschitz, M., Loidl, C. F., Andersson, K., & Ungerstedt, U. (1993). Prevention of mortality induced by perinatal asphyxia: Hypothermia or glutamate antagonism? Amino Acids, 5, 413–419.

    Article  CAS  Google Scholar 

  • Herrera-Marschitz, M., Loidl, C. F., You, Z.-B., Andersson, K., Silveira, R., O’Connor, W. T., & Goiny, M. (1994). Neurocircuitry of the basal ganglia studied by monitoring neurotransmitter release. Effects of intracerebral and perinatal asphyctic lesions. Molecular Neurobiology, 9, 171–182.

    Article  CAS  Google Scholar 

  • Herrera-Marschitz, M., Morales, P., Leyton, L., Bustamante, D., Klawitter, V., Espina-Marchant, P., Allende, C., Lisboa, F., Cunich, G., Jara-Caviedes, A., Neira, T., Gutierrez-Hernandez, M. A., Gonzalez-Lira, V., Simola, N., Schmitt, A., Morelli, M., Tasker, R. A., & Gebicke-Haerter, P. J. (2011). Perinatal asphyxia: Current status and approaches towards neuroprotective strategies, focus on sentinel proteins. Neurotoxicity Research, 19, 603–627.

    Article  CAS  Google Scholar 

  • Hoeger, H., Engelmann, M., Bernet, G., Seidl, R., Bubna-Littitz, H., Mosgoeller, W., Lubec, B., & Lubec, G. (2000). Long term neurological and behavioral effects of graded perinatal asphyxia in the rat. Life Sciences, 66, 947–962.

    Article  CAS  Google Scholar 

  • Hoeger, H., Engidawork, E., Stolzlechner, D., Bubna-Littitz, H., & Lubec, B. (2006). Long-term effect of moderate and profound hyperthermia on morphology, neurological, cognitive and behavioural functions in a rat model of perinatal asphyxia. Amino Acids, 31, 385–396.

    Article  CAS  Google Scholar 

  • Hökfelt, T., Ljungdahl, Å., Fuxe, K., & Johansson, O. (1974). Dopamine nerve terminals in the rat limbic cortex: Aspects of the dopamine hypothesis of schizophrenia. Nature, 184, 177–179.

    Google Scholar 

  • Hortobagyi, T., Gorlach, C., Benyo, Z. L., Lacza, Z., Hortobagyi, S., Wahl, M., & Harkany, T. (2003). Inhibition of neuronal nitric oxide synthase-mediated activation of poly(ADP-ribose) polymerase in traumatic brain injury: Neuroprotection by 3-aminobenzamide. Neuroscience, 121, 983–990.

    Article  CAS  Google Scholar 

  • Iuvone, L., Geloso, M. C., & Dell’Anna, E. (1996). Changes in open field behavior, spatial memory, and hippocampal parvalbumin immunoreactivity following enrichment in rats exposed to neonatal anoxia. Experimental Neurology, 139, 25–33.

    Article  CAS  Google Scholar 

  • Iwashita, A., Tojo, N., Matsuura, S., Yamazaki, S., Kamijo, K., Ishida, J., Yamamoto, H., Hattori, K., Matsuoka, N., & Mutoh, S. (2004). A novel and potent Poly(ADP-Ribose) Polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-4-phenyl-3,6-dihydro-1(2H0-pyridinyl)propyl]-4(3H)-quinazolinone) attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia. The Journal of Pharmacology and Experimental Therapeutics, 310, 425–436.

    Article  CAS  Google Scholar 

  • Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laugner, E., Wenger, R. H., Gassmann, M., Gearhart, J. D., Lawler, A. M., Yu, A. Y., & Semenza, G. L. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes & Development, 12, 149–162.

    Article  CAS  Google Scholar 

  • Jagtap, P., & Szabo, C. (2005). Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nature Review, 4, 421–440.

    CAS  Google Scholar 

  • Kamanaka, Y., Kondo, K., Ikeda, Y., Kamoshima, W., Kitajima, T., Suzuki, Y., Nakamura, Y., & Umemura, K. (2004). Neuroprotective effects of ONO-1924H, an inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC12 cells and ischemic cerebral damage. Life Sciences, 76, 151–162.

    Article  CAS  Google Scholar 

  • Kaufman, S. A., Miller, S. P., Ferreiro, D. M., Glidden, D. H., Barkovich, A. J., & Partirdge, J. C. (2003). Encephalopathy as a predictor of magnetic resonance imaging abnormalities in asphyxiated newborns. Pediatric Neurology, 28, 342–346.

    Article  Google Scholar 

  • Kauppinen, T. M., Chan, W. Y., Suh, S. W., Wiggins, A. K., Huang, E. J., & Swanson, R. A. (2006). Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases1/2. Proceedings of the National Academy of Sciences USA, 103, 7136–7141.

    Article  CAS  Google Scholar 

  • Kauppinen, T. M., Suh, S. W., Berman, A. E., Hamby, A. M., & Swanson, R. A. (2009). Inhibition of poly(ADP-ribose) polymerase suppresses inflammation and promotes recovery after ischemic injury. Journal of Cerebral Blood Flow and Metabolism, 29, 820–829.

    Article  CAS  Google Scholar 

  • Kniesel, U., Risau, W., & Wolburgh, H. (1996). Development of blood–brain barrier tight junctions in the rat cortex. Brain Research and Development Brain Research, 96, 229–240.

    Article  CAS  Google Scholar 

  • Koh, S.-H., Park, Y., Song, C. W., Kim, J. G., Kim, K., Kim, J., Kim, M.-H., Lee, S. R., Kim, D. W., Yu, H.-J., Chang, D., Hwang, S. J., & Kim, S. H. (2004). The effect of PARP inhibitor on ischemic cell death, its related inflammation and survival signals. The European Journal of Neuroscience, 20, 1461–1472.

    Article  Google Scholar 

  • Kolthur-Seetharam, U., Dantzer, F., McBurney, M. W., de Murcia, G., & Sassone-Corsi, P. (2006). Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle, 5, 873–877.

    Article  CAS  Google Scholar 

  • Lawn, J. E., Kerber, K., Enweronu-Laryea, C., & Cousens, S. (2010). 3.6 million neonatal deaths-what is progressing and what is not? Seminars in Perinatology, 34, 371–386.

    Article  Google Scholar 

  • Lee, J. W., Beene, K., Nangie, L. A., Longo-Guess, C. M., Cook, S. A., Davisson, M. T., Sundberg, J. P., Schimmel, P., & Ackerman, S. L. (2006). Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 443, 50–55.

    Article  CAS  Google Scholar 

  • Loidl, F., Gavilanes, A. W., Van Dijk, E. H., Vreuls, W., Blokland, A., Vies, J. S., Steinbusch, H. W., & Blanco, C. E. (2000). Effects of hypothermia and gender on survival and behaviour after perinatal asphyxia in rats. Physiology and Behavior, 68, 263–269.

    Article  CAS  Google Scholar 

  • Lubec, B., Mark, M., Herrera-Marschitz, M., Labudova, O., Hoeger, H., Gille, L., Nohl, H., Mosgoeller, W., & Lubec, G. (1997a). Decrease of heart protein kinase C and cyclin-dependent kinase precedes death in perinatal asphyxia of the rat. The FASEB Journal, 11, 482–492.

    Article  CAS  Google Scholar 

  • Lubec, B., Dell’Anna, E., Fang-Kircher, S., Mark, M., Herrera-Marschitz, M., & Lubec, G. (1997b). Decrease of brain protein kinase C, protein kinase A, and cyclin-dependent kinase correlating with pH precedes neuronal death in neonatal asphyxia of the rat. Journal of Investigative Medicine, 45, 284–294.

    CAS  Google Scholar 

  • Lubec, B., Labudova, O., Hoeger, H., Kirchner, L., & Lubec, G. (2002). Expression of transcription factors in the brain of rats with perinatal asphyxia. Biology of the Neonate, 81, 266–278.

    Article  CAS  Google Scholar 

  • MacDonald, J. L., & Roskams, A. J. (2009). Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Progress in Neurobiology, 88, 170–183.

    Article  CAS  Google Scholar 

  • Macleod, M. R., O’Collins, T., Howells, D. W., & Donnan, G. A. (2004). Pooling of animal experimental data reveals influence of study design and publication bias. Stroke, 35, 1203–1208.

    Article  Google Scholar 

  • Martin, S. S., Perez-Polo, J. R., Noppens, K. M., & Grafe, M. R. (2005). Biphasic changes in the levels of poly(ADPribose) polymerase-1 and caspase 3 in the immature brain following hypoxia-ischemia. International Journal of Developmental Neuroscience, 23, 673–686.

    Article  CAS  Google Scholar 

  • Moonen, H. J. J., Geraets, L., Vaarhorst, A., Wouters, E. F. M., Bast, A., & Hageman, G. J. (2005). Theophylline prevents NAD+ depletion via PARP-1 inhibition in human pulmonary epithelial cells. Biochemical and Biophysical Research Communications, 338, 1805–1810.

    Article  CAS  Google Scholar 

  • Morales, P., Fiedler, J. L., Andres, S., Berrios, C., Huaiquin, P., Bustamante, D., Cardenas, S., Parra, E., & Herrera-Marschitz, M. (2008). Plasticity of hippocampus following perinatal asphyxia: Effects on postnatal apoptosis and neurogenesis. Journal of Neuroscience Research, 86, 2650–2662.

    Article  CAS  Google Scholar 

  • Morales, P., Simola, N., Bustamante, D., Lisboa, F., Fiedler, J., Gebicke-Haerter, P., Morelli, M., Tasker, R. A., & Herrera-Marschitz, M. (2010). Nicotinamide prevents the effect of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Experimental Brain Research, 202, 1–14.

    Article  CAS  Google Scholar 

  • Nakajima, H., Kakui, N., Ohkuma, K., Ishikawa, M., & Hasegawa, T. (2005). A newly synthesized Poly(ADPRibose)Polymerase inhibitor, DR2313[2-methyl-3,5,7,8-tetrahydrothiopyranol[4,3-d]-pyrimidine-4-one]: Pharmacological profiles, neuroprotective effects and therapeutic time window in cerebral ischemia in rats. The Journal of Pharmacology and Experimental Therapeutics, 312, 472–481.

    Article  CAS  Google Scholar 

  • Northington, F. J., Ferreiro, D. M., Graham, E. M., Traystman, R. J., & Martin, L. J. (2001). Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiology of Disease, 8, 207–219.

    Article  CAS  Google Scholar 

  • Odd, D. E., Lewis, G., Whitelaw, A., & Gunnell, D. (2009). Resuscitation at birth and cognition at 8 years of age: A cohort study. Lancet, 373, 1615–1622.

    Article  Google Scholar 

  • Perez de la Mora, M., Gallegos-Cari, A., Crespo-Ramirez, M., Marcellino, D., Hansson, A. C., & Fuxe, K. (2012). Distribution of dopamine D2-like receptors in the rat amygdala and their role in the modulation of unconditioned fear and anxiety. Neuroscience, 201, 252–266.

    Article  CAS  Google Scholar 

  • Petrilli, V., Herced, Z., Hassa, P. O., Patel, N. S., Di Paola, R., Cortes, U., Dugo, L., Filipe, H. M., Thiemermann, C., Hottiger, M. O., Cuzzocrea, S., & Wang, Z. Q. (2004). Noncleavable poly(ADP-ribose) polymerase-1 regulates inflammation response in mice. The Journal of Clinical Investigation, 114, 1072–1081.

    Article  CAS  Google Scholar 

  • Qiao, M., Malisza, K. L., Del Biio, M. R., & Tuor, U. L. (2001). Correlation of cerebral hypoxic-ischemic T2 changes with tissue alterations in water content and protein extravasation. Stroke, 32, 958–963.

    Article  CAS  Google Scholar 

  • Rajamohan, S. B., Pillai, V. B., Gupta, M., Sundaresan, N. R., Birukov, K. G., Samant, S., Hottiger, M. A., & Gupta, M. P. (2009). SIRT promote cell survival under stress by deacetylation-dependent deactivation of poly(ADP) polymerase 1. Molecular and Cellular Biology, 29, 4116–4129.

    Article  CAS  Google Scholar 

  • Ransohoff, R. M., Kivisakk, P., & Kidd, G. (2003). Three or more routes for leukocyte migration into the central nervous system. Nature Reviews Immunology, 3, 569–581.

    Article  CAS  Google Scholar 

  • Robertson, N. J., Tan, S., Groenedaal, F., van Bel, F., Juul, S. E., Bennet, L., Derrick, M., Back, S. A., Valdez, R. C., Northington, F., Gunn, A. J., Mallard, Ȧ., & C. (2012). Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? Pediatrics, 160, 544–552.

    Article  Google Scholar 

  • Sakakibara, Y., Mitha, A. P., Ogilvy, C. S., & Maynard, K. I. (2000). Post-treatment with nicotinamide (vitamin B(3)) reduces the infarct volume following permanent focal cerebral ischemia in female Sprague–Dawley and Wistar rats. Neuroscience Letters, 281, 111–114.

    Article  CAS  Google Scholar 

  • Sananbenesi, F., & Fischer, A. (2009). The epigenetic bottleneck of neurodegenerative and psychiatric diseases. Biological Chemistry, 390, 1145–1153.

    Article  CAS  Google Scholar 

  • Scheepens, A., Wassink, G., Piersma, M. J., Van de Berg, W. D. J., & Blanco, C. E. (2003). A delayed increase in hippocampus following global asphyxia in the neonatal rat. Brain Research. Developmental Brain Research, 142, 67–76.

    Article  CAS  Google Scholar 

  • Schultz, N., Lopez, E., Saleh-Gohari, N., & Helleday, T. (2003). Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Research, 31, 4959–4964.

    Article  CAS  Google Scholar 

  • Seidl, R., Stoeckler-Ipsiroglu, S., Rolinski, B., Kohlhauser, C., Herkner, K. R., Lubec, B., & Lubec, G. (2000). Energy metabolism in graded perinatal asphyxia of the rat. Life Sciences, 67, 421–435.

    Article  CAS  Google Scholar 

  • Shalak, L. F., Laptook, A. R., Jafri, H. S., Ramilo, O., & Perlman, J. M. (2002). Clinical chorioamnionitis elevated cytokines and brain injury in term infants. Pediatrics, 110, 673–680.

    Article  Google Scholar 

  • Simola, N., Bustamante, D., Pinna, A., Pontis, S., Morales, P., Morelli, M., & Herrera-Marschitz, M. (2008). Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Experimental Brain Research, 185, 595–601.

    Article  Google Scholar 

  • Skaper, S. D. (2003). Poly(ADP-ribosyl)ation enzyme-1 as a target for neuroprotection in acute central nervous system injury. Current Drug Targets. CNS and Neurological Disorders, 2, 279–291.

    Article  CAS  Google Scholar 

  • Strackx, E., Van den Hove, D. L., Prickaerts, J., Zimmermann, L., Steinbusch, H. W., Blanco, C. E., Gavilanes, A. W., & Vles, J. S. (2010). Fetal asphyctic preconditioning protects against perinatal asphyxia-induced behavioral consequences in adulthood. Behavioural Brain Research, 208, 343–351.

    Article  Google Scholar 

  • Sung, P., Bailly, V., Weber, C., Thompson, L. H., Prakash, L., & Prakash, S. (1993). Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature, 365, 852–855.

    Article  CAS  Google Scholar 

  • Takahashi, K., Pieper, A. A., Croul, S. E., Zhang, J., Snyder, S. H., & Greenberg, J. H. (1999). Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Research, 829, 46–54.

    Article  CAS  Google Scholar 

  • Trucco, C., Oliver, F. J., de Murcia, G., & Menissier de Murcia, J. (1998). DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Research, 26, 2644–2649.

    Article  CAS  Google Scholar 

  • Ullrich, O., Diestel, A., Evüpoglu, I. Y., & Nitsch, R. (2001). Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1. Nature Cell Biology, 3, 1035–1042.

    Article  CAS  Google Scholar 

  • Van de Berg, W. D., Kwaijtaal, M., de Louw, A. J., Lissone, N. P., Schmitz, C., Faull, R. L., Blokland, A., Blanco, C. E., & Steinbusch, H. W. (2003). Impact of perinatal asphyxia on the GABAergic and locomotor system. Neuroscience, 117, 83–96.

    Article  Google Scholar 

  • Van Erp, T. G. M., Saleh, P. A., Rosso, P. A., Huttunen, M., Lönnqvist, J., Pirkola, T., Salonen, O., Valanne, L., Poutanen, V.-P., Standersköld-Nordenstam, C.-G., & Cannon, T. D. (2002). Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings and healthy unrelated volunteers. The American Journal of Psychiatry, 159, 1514–1520.

    Article  Google Scholar 

  • Vannuci, S., & Hagberg, H. (2004). Hypoxia-ischemia in the immature brain. The Journal of Experimental Biology, 207, 3149–3154.

    Article  Google Scholar 

  • Venerosi, A., Valanzano, A., Cirulli, F., Alleva, E., & Calamandrei, G. (2004). Acute global anoxia during C-section birth affects dopamine-mediated behavioural responses and reactivity to stress. Behavioural Brain Research, 154, 155–164.

    Article  CAS  Google Scholar 

  • Venerosi, A., Cutuli, D., Chiarotti, F., & Calamandrei, G. (2006). C-section birth per se or followed by global asphyxia altered emotional behaviour in neonate and adult rats. Behavioural Brain Research, 168, 56–63.

    Article  Google Scholar 

  • Vexler, Z. S., & Yenari, M. A. (2009). Does inflammation after stroke affect the developing brain differently than adult brain? Developmental Neuroscience, 31, 378–393.

    Article  CAS  Google Scholar 

  • Virag, L., & Szabo, C. (2002). The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacological Reviews, 54, 375–429.

    Article  CAS  Google Scholar 

  • Wan, F. J., Lin, H. C., Karg, B. H., Tseng, C. J., & Tung, C. S. (1999). d-amphetamine- induced depletion of energy and dopamine in the rat striatum is attenuated by nicotinamide pretreatment. Brain Research Bulletin, 50, 167–171.

    Article  CAS  Google Scholar 

  • Wyss, J. M., & Van Groen, T. (1992). Connections between the retrosplenial cortex and the hippocampal formation in the rat: A review. Hippocampus, 2, 1–11.

    Article  CAS  Google Scholar 

  • Wyss, M. T., Jolivet, R., Buck, A., Magistretti, P. J., & Weber, B. (2011). In vivo evidence for lactate as a neuronal energy source. The Journal of Neuroscience, 31, 7477–7485.

    Article  CAS  Google Scholar 

  • Yan, Q., Briehl, M., Crowley, C. L., Payne, C. M., Bernstein, H., & Bernstein, C. (1999). The NAD+ precursors, nicotinic acid and nicotinamide upregulate glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase mRNA in Jurkat cells. Biochemical and Biophysical Research Communications, 255, 133–136.

    Article  CAS  Google Scholar 

  • Zampieri, M., Passananti, C., Calabrese, R., Perilli, M., Corbi, N., De Cave, F., Guastafierro, T., Bacalini, M. G., Reale, A., Amicosante, G., Calabrese, L., Zlatanova, J., & Caiafa, P. (2009). Parp 1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity. PLoS One, 4, 4717.

    Article  Google Scholar 

  • Zhang, J., Pieper, A., & Snyder, S. H. (1995). Poly(ADP-ribose) synthase activation: An early indicator of neurotoxic DNA damage. Journal of Neurochemistry, 65, 1411–1414.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Contract grant sponsors: FONDECYT-Chile (contracts: 1120079; 1110263; 1120577) (MH-M; PM; MH), CONICYT/DAAD (contract: 1378–090529) (PJG-H; MH-M), Millennium Institute Initiative-Chile (BNI P09-015-F), BMBF (NGFN+ TP9), and DAAD (415/alechile) (PJ G-H). TN-P and VM are MECESUP (UCH0704) fellows; PE-M and ER-M are CONYCYT fellows. The excellent technical from Mr. Juan Santibañez and Ms. Carmen Almeyda is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Herrera-Marschitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Neira-Peña, T. et al. (2022). Molecular, Cellular, and Behavioural Effects Produced by Perinatal Asphyxia: Protection by Poly (ADP-Ribose) Polymerase 1 (PARP-1) Inhibition. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_115

Download citation

Publish with us

Policies and ethics