Skip to main content
Log in

Highly Performing MSM Type Ag/n-titanium Dioxide Nanotubes/p-Si Heterojunction Based Ultraviolet-A Photodetectors

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Recently, heterojunction-based ultraviolet (UV) photodetectors (PDs) have found a wide range of applications in day-to-day life. The fabrication of these UV PD devices using high-k TiO2 nanostructures i.e. nanotubes (NTs) at low temperature processing steps in association with cost-effective deposition methods is crucial. In this work, Ag/n-TiO2NTs/p-Si heterojunction-based MSM UV PD devices were fabricated using hydrothermal, spin coating and e-beam evaporation methods. The structural, chemical, optical, morphological and elemental composition characteristics of the formed TiO2NTs/p-Si stacks were explored by XRD/Raman, XPS, UV–Vis, FESEM and EDS techniques, respectively. XRD and FESEM analysis revealed the formation of anatase phase of TiO2NTs with an average diameter of ~ 16.1 nm and length of ~ 50.9 nm. XPS investigation revealed two intense core level BE peaks of Ti2p3/2 and Ti2p1/2. The photodetection parameters of the fabricated MSM UV PD device were systematically checked in dark and UV-A light (320–400 nm) illumination. At 3 V, the fabricated Ag/n-TiO2NTs/p-Si device presented superior photosensing properties with a responsivity of 570 mA/W, EQE of 189% and rise/decay times of 120 ms/95 ms. Further, the superior structural and photosensing parameters attained from the fabricated MSM UV PD device may expand its scope to serve as a future cost-effective alternative to other wide bandgap semiconductor (GaN, SiC and ZnO) based heterojunction PD devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Lahiri R, Ghosh A, Dwivedi SMMD, Chakrabartty S, Chinnamuthu P, Mondal A (2017) Performance of Erbium-doped TiO2 thin film grown by physical vapor deposition technique. Appl Phys A: Mater Sci Process 123:573

    Article  Google Scholar 

  2. Lin B, Fu Z, Jia Y (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943–945

    Article  CAS  Google Scholar 

  3. Wang H, Liang W, Zhang W, Zhou D (2017) Photoelectric performance of TiO2 nanotube array film of highly transparent vs nontransparent on FTO glass. Mater Sci Semicond Process 71:50–53

    Article  CAS  Google Scholar 

  4. Zhang C, Bai W, Yang Z (2016) A novel photoelectrochemical sensor for bilirubin based on porous transparent TiO2 and molecularly imprinted polypyrrole. Electrochim Acta 187:451–456

    Article  CAS  Google Scholar 

  5. Viet PV, Hieu LV, Thi CM (2016) The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application. AIMS Mater Sci 3:460–469

    Article  CAS  Google Scholar 

  6. Peighambardoust NS, Aydemir U (2020) Blue TiO2 nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting. Turk J Chem 44:1642–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Satoshi U, Ryoji C, Miho T, Naruhiko M, Masayuki S (2002) Application of titania nanotubes to a dye-sensitized solar cell. Electrochem 70:418–420

    Article  Google Scholar 

  8. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  9. Guo W, Xue X, Wang S, Lin C, Wang ZL (2012) An integrated power pack of dye-sensitized solar cell and li battery based on double-sided TiO2 nanotube arrays. Nano Lett 12:2520–2523

    Article  CAS  PubMed  Google Scholar 

  10. Zou J, Zhang Q, Huang K, Marzari N (2010) Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J Phys Chem C 114:10725–10729

    Article  CAS  Google Scholar 

  11. Wang L, Yang W, Chong H, Wang L, Gao F, Tian L, Yang Z (2015) Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures. RSC Adv 5:52388–52394

    Article  CAS  Google Scholar 

  12. Joshna P, Hazra A, Chappanda KN, Pattnaik PK, Kundu S (2020) Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array. Semicond Sci Technol 35:015001

    Article  CAS  Google Scholar 

  13. Zhang D-Y, Ge C-W, Wang J-Z, Zhang T-F, Wu YC, Liang F-X (2016) Single-layer graphene-TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Appl Surf Sci 387:1162–1168

    Article  CAS  Google Scholar 

  14. Nallabala NKR, Vattikuti SVP, Verma VK, Singh VR, Alhammadi S, Kummara VK, Manjunath V, Dhanalakshmi M, Reddy VRM (2022) Highly sensitive and cost-effective metal-semiconductor-metal asymmetric type Schottky metallization based ultraviolet photodetecting sensors fabricated on n-type GaN. Mater Sci Semicond Process 138:106297

    Article  Google Scholar 

  15. Pansri S, Supruangnet R, Nakajima H, Rattanasuporn S, Noothongkaew S (2020) Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors. J Mater Sci 55:4332–4344

    Article  CAS  Google Scholar 

  16. Nallabala NKR, Godavarthi S, Kummara VK, Kesarla MK, Saha D, Akkera HS, Guntupalli GK, Kumar S, Vattikuti SVP (2020) Structural, optical and photoresponse characteristics of metal-insulator-semiconductor (MIS) type Au/Ni/CeO2/GaN Schottky barrier ultraviolet photodetector. Mater Sci Semicond Process 117:105190

    Article  CAS  Google Scholar 

  17. Nallabala NKR, Kushvaha SS, Kumari A, Singh VR, Verma VK, Kaleemulla S, Singh LP, Jilani SAK, Vattikuti SVP, Bakash KR, Sambasivam S, Shim J (2023) Self-powered and improved photoresponsive broadband photodetecting sensors using Au/NiFe2O4/p-Si heterojunction architecture. Mater Sci Semicond Process 156:107266

    Article  CAS  Google Scholar 

  18. Karaagac H, Aygun LE, Parlak M, Ghaffari M, Biyikli N, Okyay AK (2012) Au/TiO2 nanorod-based Schottky-type UV photodetectors. Phys Status Solidi RRL 6:442–444

    Article  CAS  Google Scholar 

  19. Nallabala NKR, Singh LP, Yuvaraj C, Sambasivam S, Kumar S, Shankar MV, Alhammadi S, Kushvaha SS, Kummara VK, Bakash KR, Reddy VRM (2023) UV-to-NIR broadband photodetecting sensors using n-TiO2 nanorods/p-Si heterojunction in lateral and vertical configurations. Appl Phys A: Mater Sci Process 129:412

    Article  CAS  Google Scholar 

  20. Nicolaescu M, Bandas C, Orha C, Serban V, Lazau C, Caprarescu S (2021) Fabrication of a UV photodetector based on n-TiO2/p-CuMnO2 heterostructures. Coat 11:1380

    Article  CAS  Google Scholar 

  21. Huang Z, Ji C, Cheng L, Han J, Yang M, Wei X, Jiang Y, Wang J (2019) Zero-bias visible to near-infrared horizontal p-n-p TiO2 nanotubes doped monolayer graphene photodetector. Molecules 24:1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue H, Kong X, Liu Z, Liu C, Zhou J, Chen W (2007) TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Appl Phys Lett 90:201118

    Article  Google Scholar 

  23. Chaiyarat W, Yoon UTY, An K-S (2020) Hybridization and characterization of carboxylate-rich Graphene Quantum Dots (GQDs)/TiO2 nanotubes for UV detectors. J Mater Sci: Appl Energy 9:531–538

    Google Scholar 

  24. Wang N, Zheng R, Chen J, Ding Z, San H, Zhang S (2022) Enhanced photoelectrochemical performance of carbon nanotubes modified black TiO2 nanotube arrays for self-driven photodetectors. J Sci: Adv Mater Devices 7:100452

    CAS  Google Scholar 

  25. Zhang Q, Chen R, San H, Liu G, Wang K (2015) Betavoltaic microbatteries using TiO2 nanotube arrays. 2015 Transducers – 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Transducers 2015, Anchorage, Alaska, USA, June 21–25, pp 1909–1912

  26. Wehrenfennig C, Palumbiny CM, Snaith HJ, Johnston MB, Schmidt-Mende L, Herz LM (2015) Fast charge-carrier trapping in TiO2 nanotubes. J Phys Chem C 119:9159–9168

    Article  CAS  Google Scholar 

  27. Zou Y, Zhang Y, Hu Y, Gu H (2018) Ultraviolet detectors based on wide bandgap semiconductor nanowire. A review. Sensors 18:2072–2097

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grimes AC (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem A 17:1451–1457

    Article  CAS  Google Scholar 

  29. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B 15:627–637

    Article  CAS  Google Scholar 

  30. Yanagisawa K, Ovenstone J (1999) Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J Phys Chem B 103:7781–7787

    Article  CAS  Google Scholar 

  31. Appadurai T, Subramaniyam CM, Kuppusamy R, Karazhanov S, Subramanian B (2019) Electrochemical performance of nitrogen-doped TiO2 nanotubes as electrode material for supercapacitor and Li-Ion battery. Mol 24:2952

    Article  CAS  Google Scholar 

  32. Kumar A, Mondal S, Kumar SG, Rao KSRK (2015) High performance sol-gel spin-coated titanium dioxide dielectric based MOS structures. Mater Sci Semicond Process 40:77–83

    Article  CAS  Google Scholar 

  33. Kumbhar SM, Shevate SS, Patil AR, Shaikh SK, Rajpure KY (2020) Dip coated TiO2 based metal-semiconductor-metal ultraviolet photodetector for UV A monitoring. Superlattices Microstruct 141:106490

    Article  CAS  Google Scholar 

  34. Karayan AI, Ferdian D, Pratesa Y (2012) Synthesis of TiO2 nanotube in TI-10Ta-10Nb thin film by anodization. Int J Technol 3:140–144

    Google Scholar 

  35. Pan L, Wang S, Zou J-J, Huang Z-F, Wang L, Zhang X (2014) Ti3+-defected and V-doped TiO2 quantum dots loaded on MCM-41. Chem Commun 50:988–990

    Article  CAS  Google Scholar 

  36. Xia Y, Jiang Y, Li F, Xia M, Xue B, Li Y (2014) Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Appl Surf Sci 289:306–315

    Article  CAS  Google Scholar 

  37. Fu J, Cao S, Yu J, Low J, Lei Y (2014) Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment. Dalton Trans 43:9158–9165

    Article  CAS  PubMed  Google Scholar 

  38. Sofianou M-V, Tassi M, Psycharis V, Boukos N, Thanos S, Vaimakis T, Yu J, Trapalis C (2015) Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed 0 0 1 facets. Appl Catal B: Environ 162:27–33

    Article  CAS  Google Scholar 

  39. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2011) Oxygen rich titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv Funct Mater 21:3744–3752

    Article  CAS  Google Scholar 

  40. Brevet A, Peterle PM, Imhoff L, de Lucas MCM, Bourgeois S (2005) Initial stages of TiO2 thin films MOCVD growth studied by in situ surface analyses. J Cryst Growth 275:1263

    Article  Google Scholar 

  41. Armelao L, Bertagnolli H, Bleiner D, Groenewolt M, Gross S, Krishnan V, Sada C, Schubert U, Tondello E, Zattin A (2007) Highly dispersed mixed zirconia and hafnia nanoparticles in a silica matrix: first example of a ZrO2–HfO2–SiO2 ternary oxide system. Adv Funct Mater 17:1671

    Article  CAS  Google Scholar 

  42. Yang T, Park S-J, Kim TG, Shin DS, Suh K-D, Park J (2017) Ultraviolet photodetector using pn junction formed by transferrable hollow n-TiO2 nanospheres monolayer. Opt Express 25:30843

    Article  CAS  PubMed  Google Scholar 

  43. Park SK, Jeong JS, Yun TK, Bae JY (2015) Preparation of carbon-doped TiO2 and its application as a photoelectrodes in dye-sensitized solar cells. J Nanosci Nanotechnol 15:1529–1532

    Article  CAS  PubMed  Google Scholar 

  44. Selman AM (2016) Studies on the influence of growth time on the rutile TiO2 nanostructures prepared on Si substrates with fabricated high-sensitivity and fast-response p-n heterojunction photodiode. Am J Nano Res Appl 4:23–32

    Google Scholar 

  45. Noothongkaew S, Han JK, Lee YB, Thumthan O, An K-S (2017) Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors. Prog Nat Sci: Mater Int 27:641–646

    Article  CAS  Google Scholar 

  46. Chakrabartty S, Mondal A, Sarkar MB, Choudhuri B, Saha AK, Bhattacharyya A (2014) TiO2 nanoparticles arrays ultraviolet-A detector with Au Schottky contact. IEEE Photon Technol Lett 26:1065–1068

    Article  CAS  Google Scholar 

  47. Zhou M, Wu B, Zhang X, Cao S, Ma P, Wang K, Fan Z, Su M (2020) TiO2-ZnO core-shell nanotubes: preparation and UV photoelectric properties of aligned ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanotubes. ACS Appl Mater Interfaces 12:38490–38498

    Article  CAS  PubMed  Google Scholar 

  48. Zheng Z, Zhuge F, Wang Y, Zhang J, Gan L, Zhou X, Li H, Zhai T (2017) Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv Funct Mater 27:1703115

    Article  Google Scholar 

  49. Zheng L, Deng X, Wang Y, Chen J, Fang X, Wang L, Shi X, Zheng H (2020) Self-powered flexible TiO2 fibrous photodetectors: heterojunction with P3HT and boosted responsivity and selectivity by Au nanoparticles. Adv Funct Mater 30:2001604

    Article  CAS  Google Scholar 

  50. Selman AM, Hassan Z (2015) Highly sensitive fast-response UV photodiode fabricated from rutile TiO2 nanorod array on silicon substrate. Sens Actuator A Phys 221:15–21

    Article  CAS  Google Scholar 

  51. Selman AM, Hassan Z (2015) Growth and characterization of rutile TiO2 nanorods on various substrates with fabricated fast-response metal-semiconductor-metal UV detector based on Si substrate. Superlattices Microstruct 83:549–564

    Article  CAS  Google Scholar 

  52. Guller O, Peksu E, Karaagac H (2018) Synthesis of TiO2 nanorods for Schottky-Type UV-Photodetectors and third-generation solar cells. Phys Status Solidi A 215:1700404

    Article  Google Scholar 

  53. Çalışkan D, Bütün B, Özcan Ş, Özbay E (2013) Metal-semiconductor-metal photodetector on as-deposited TiO2 thin films on sapphire substrate. J Vac Sci Technol B 31:020606

    Article  Google Scholar 

  54. Xiao Y, Min L, Liu X, Liu W, Younis U, Peng T, Kang X, Wu X, Ding S, Zhang DW (2020) Facile integration of MoS2/SiC photodetector by direct chemical vapor deposition. Nanophotonics 9:3035–3044

    Article  CAS  Google Scholar 

  55. Megherbi ML, Bencherif H, Dehimi L, Mallemace ED, Rao S, Pezzimenti F, Corte FGD (2021) An efficient 4H-SiC photodiode for UV sensing applications. Electron 10:2517

    Article  CAS  Google Scholar 

  56. Mukundan S, Roul B, Shetty A, Chandan G, Mohan L, Krupanidhi SB (2015) Enhanced UV detection by non-polar epitaxial GaN films. AIP Adv 5:127208

    Article  Google Scholar 

  57. Tian H, Liu Q, Hu A, He X, Hu Z, Guo X (2018) Hybrid graphene/GaN ultraviolet phototransistors with high responsivity and speed. Opt Express 26:5408–5415

    Article  CAS  PubMed  Google Scholar 

  58. Inamdar SI, Ganbavle VV, Rajpure KY (2014) ZnO based visible-blind UV photodetector by spray pyrolysis. Superlattices Microstruct 76:253–263

    Article  CAS  Google Scholar 

  59. Ali GM, Chakrabarti P (2010) Performance of ZnO-based ultraviolet photodetectors under varying thermal treatment. IEEE Photonics J 2:784–793

    Article  Google Scholar 

  60. Dong Y, Zou Y, Song J, Zhu Z, Li J, Zeng H (2016) Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy 30:173–179

    Article  CAS  Google Scholar 

  61. Xie Y, Wei L, Wei G, Li Q, Wang D, Chen Y, Yan S, Liu G, Mei L, Jiao J (2013) A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Res Lett 8:188

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ling CC, Guo TC, Lu WB, Li XF, Zhu L, Ma M, Xue QZ (2018) Ultrahigh photosensitivity and detectivity of hydrogen-treated TiO2 nanorod array/SiO2/Si heterojunction broadband photodetectors and its mechanism. J Mater Chem C 6:2319–2328

    Article  CAS  Google Scholar 

  63. Nallabala NKR, Reddy VRM, Singh VR, Bakash KR, Kumar S, Saha D, Mahendran V, Kummara VK, Guntupalli GK, Vattikuti SVP (2022) Enhanced photoresponse performance in GaN based symmetric type MSM ultraviolet-A and MIS ultraviolet-A to C photodetectors. Sens Actuator A Phys 339:113502

    Article  CAS  Google Scholar 

  64. Ji T, Liu Q, Zou R, Zhang Y, Wang L, Sang L, Liao M, Hu J (2017) Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering. J Mater Chem C 5:12848–12856

    Article  CAS  Google Scholar 

  65. Xie F, Lu H, Xiu X, Chen D, Han P, Zhang R, Zheng Y (2011) Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate. Solid-State Electron 57:39–42

    Article  CAS  Google Scholar 

  66. Ali H, Zhang Y, Tang J, Peng K, Sun S, Sun Y, Song F, Falak A, Wu S, Qian C, Wang M, Zuo Z, Jin K-J, Sanchez AM, Liu H, Xu X (2018) High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs Nanowire. Small 14:1704429

    Article  Google Scholar 

  67. Ravikiran L, Radhakrishnan K, Dharmarasu N, Agrawal M, Wang Z, Bruno A, Soci C, Lihuang T, Siong AK (2016) Responsivity drop due to conductance modulation in GaN metal-semiconductor-metal Schottky based UV photodetectors on Si (111). Semicond Sci Technol 31:095003

    Article  Google Scholar 

  68. Gautam V, Gautam S, Maurya GK, Kandpal K, Singh B, Ganesan R, Kushvaha SS, Kumar P (2022) Investigation of RF sputtered, n-Bi2Se3 heterojunction on p-Si for enhanced NIR optoelectronic applications. Sol Energy Mater Sol Cells 248:112028

    Article  CAS  Google Scholar 

  69. Nallabala NKR, Yuvaraj C, Vohra A, Dhamodaran A, Kaleemulla S, Jaswanth A, Mohan KC, Sambasivam S, Netheti VSB, Reddy VRM, Kim WK (2023) Evaluation of photosensing parameters of Au/polystyrene/n-Si heterojunction based self-powered organic broadband photodetectors. Silicon 15:5623–5633

    Article  CAS  Google Scholar 

  70. Nallabala NKR, Kushvaha SS, Sangaraju S, Kummara VK (2024) Enhanced self-driven ultraviolet photodetection performance of high-k Ta2O5/GaN heterostructure. Mater Sci Semicond Process 170:107954

    Article  Google Scholar 

  71. Xing J, Wei H, Guo E-J, Yang F (2011) Highly sensitive fast-response UV photodetectors based on epitaxial TiO2 films. J Phys D: Appl Phys 44:375104-1–1375104-5

    Article  Google Scholar 

Download references

Funding

The authors Dr. N. Nanda Kumar Reddy thankfully acknowledge the financial support received from DST, SERB, Government of India, Major Research Project No. ECR/2017/002868 and DST-FIST Program-2015 (SR/FST/College-263). The author Dr. Adel El-marghany grateful to the funding received from Researchers Supporting Project No. RSPD2023R667, King Saud University, Riyadh, Saudi Arabia. Further, all the authors are grateful to the technical support received from Dr. N. Vijaya Bhaskar Choudary, Secretary and Correspondent, MITS, Madanapalle-517325, A.P, India.

Author information

Authors and Affiliations

Authors

Contributions

N.K.R.N, S.S.K, M.V.S and V.R.M.R: Writing-original draft, Project administration, Methodology, Funding acquisition. S.K, M.R.R. A.E, S.S, M.C.S. and P.R: Formal analysis, Resources and Conceptualization. V.K: Software and Data curation. All the authors reviewed the entire manuscript.

Corresponding authors

Correspondence to Sunil Singh Kushvaha, Muthukonda Venkatakrishnan Shankar or Vasudeva Reddy Minnam Reddy.

Ethics declarations

Ethics Approval

This manuscript is not submitted to other journals for simultaneous consideration and is the original work.

Consent to Participate/for Publication

All the authors reviewed the submitted manuscript and agreed with the policies of the journal ‘Silicon’.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nallabala, N.K.R., Kaleemulla, S., Reddy, M.R. et al. Highly Performing MSM Type Ag/n-titanium Dioxide Nanotubes/p-Si Heterojunction Based Ultraviolet-A Photodetectors. Silicon 16, 2815–2826 (2024). https://doi.org/10.1007/s12633-024-02877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-024-02877-1

Keywords

Navigation