Skip to main content
Log in

Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nickel oxide (NiO)-decorated titanium dioxide (TiO2) heterojunction photodetectors were prepared by two-step anodization. Surface scattering of NiO particles was successfully controlled by varying second-step anodizing voltage, with substantially less clustering of NiO particles on the TiO2 nanotubes (NTs) observed as the voltage increased. Fabricated photodetectors exhibited higher sensitivity to UV light as NiO surface dispersion increased. Electronic bandgap of TiO2 and that of NiO was determined as ~ 3.35 eV and ~ 3.80 eV, respectively. Introduction of NiO particles on well-ordered TiO2 NTs narrowed the bandgap of TiO2, and the difference between work functions of TiO2 and NiO produced sufficient built-in electric field to separate the electron–hole pairs. This led to an enhanced performance of NiO/TiO2 heterojunction photodetectors, which showed high values of responsivity (86 A/W), external quantum efficiency (292%), and detectivity (2.2 × 1010 Jones) under 365 nm UV light illumination. The valence and conduction band offsets at the interface of the NiO/TiO2 heterojunction were determined as ~ 1.54 eV and ~ 1.99 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lu H, Tian W, Cao FR, Ma YL, Gu BK, Li L (2016) Large scale highly efficient and selfpowered UV photodetectors enabled by all-solidstate n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions. Adv Funct Mater 26:1296–1302

    CAS  Google Scholar 

  2. Hatch HM, Briscoe J, Dunn S (2013) A selfpowered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv Mater 25:867–871

    CAS  Google Scholar 

  3. Yang Z, Wang MQ, Ding JJ, Sun ZW, Li L, Huang J, Liu J, Shao JY (2015) Semitransparent ZnO–CuI/CuSCN photodiode detector with narrow-band UV photoresponse. ACS Appl Mater Interfaces 7:21235–21244

    CAS  Google Scholar 

  4. Kallol R, Medini P, Srijit G, Phanindra ST, Gopalakrishnan R, Srinivasan R, Arindam G (2013) Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol 8:826–830

    Google Scholar 

  5. Irvin P, Ma Y, Bogorin DF, Cen C, Bark CW, Folkman CM, Eom CB, Levy J (2010) Rewritable nanoscale oxide photodetector. Nat Photonics 4:849–852

    CAS  Google Scholar 

  6. Kim KM, Song SJ, Kim GH, Seok JY, Lee MH, Yoon JH, Park J, Hwan CS (2011) Collective motion of conducting filaments in p/n-type TiO2/p-type NiO/Pt stacked resistance switching memory. Adv Funct Mater 21:1587–1592

    CAS  Google Scholar 

  7. Tsai DS, Liu KK, Lien DH, Tsai ML, Kang CF, Lin CA, Li LJ, He JH (2013) Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7:3905–3911

    CAS  Google Scholar 

  8. Bie YQ, Liao ZM, Zhang HZ et al (2011) Self-powered ultrafast visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p–n junctions. Adv Mater 23:649–653

    CAS  Google Scholar 

  9. Chen HY, Liu H, Zhang ZM, Hu K, Fang XS (2016) Nanostructured photodetectors: from ultraviolet to terahertz. Adv Mater 28:403–433

    CAS  Google Scholar 

  10. Liu X, Gu L, Zhang Q, Wu J, Long Y, Fan Z (2014) All-printable bandedge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun 5:4007

    CAS  Google Scholar 

  11. Jin Y, Wang J, Sun B, Blakesley JC, Greenham NC (2008) Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett 8:1649–1653

    CAS  Google Scholar 

  12. Liu G, Hoivik N, Wang X, Lu S, Wang K, Jakobsen H (2013) Photoconductive freestanding crystallized TiO2 nanotubemembranes. Electrochimica Acta 93:80–86

    CAS  Google Scholar 

  13. Fang XS, Yan J, Hu L, Liu H, Lee PS (2012) Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv Funct Mater 22:1613–1622

    CAS  Google Scholar 

  14. Li H, Chen Z, Tsang CK et al (2014) Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J Mater Chem A 2:229–236

    CAS  Google Scholar 

  15. Zheng LX, Cheng H, Liang F, Shu S, Tsang CK, Li H, Lee ST, Li YY (2012) Porous TiO2 photonic band gap materials by anodization. J Phys Chem C 116:5509–5515

    CAS  Google Scholar 

  16. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl 50:2904–2939

    CAS  Google Scholar 

  17. Kong X, Liu C, Dong W et al (2009) Metal–semiconductor–metal TiO2 ultraviolet detectors with Ni electrodes. Appl Phys Lett 94:123502

    Google Scholar 

  18. Joshna P, Hazra A, Chappanda KN, Pattnaik PK, Kundu S (2019) Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array. Semicond Sci Technol 35:015001

    Google Scholar 

  19. Zou J, Zhang Q, Huang K, Marzari N (2010) Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J Phys Chem C 114:10725–10729

    CAS  Google Scholar 

  20. Zhang DY, Ge CW, Wang JZ, Zhang TF, Wu YC, Liang FX (2016) Single-layer graphene–TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Appl Surf Sci 387:1162–1168

    CAS  Google Scholar 

  21. Guller O, Peksu E, Karaagac H (2018) Synthesis of TiO2 nanorods for Schottky-type UV-photodetectors and third-generation solar cells. Phys Phys Status Solidi. https://doi.org/10.1002/pssa.2017004041700404

    Article  Google Scholar 

  22. Wang L, Yang W, Chong H, Wang L, Gao F, Tian L, Yang Z (2015) Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures. RSC Adv 5:52388–52394

    CAS  Google Scholar 

  23. Wang MZ, Liang FX, Nie B et al (2013) TiO2 nanotube array/monolayer graphene film Schottky junction ultraviolet light photodetectors. Part Part Syst Charact 30:630–636

    CAS  Google Scholar 

  24. Zhao CX, Liang ZM, Su MZ, Liu PY, Mai WJ, Xie WG (2015) Self-powered, high-speed and visible–near infrared response of MoO3−x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering. ACS Appl Mater Interfaces 7:25981–25990

    CAS  Google Scholar 

  25. Khun K, Ibupoto ZH, Willander M (2013) Development of fast and sensitive ultraviolet photodetector using p-type NiO/n-type TiO2 heterostructures. Phys Status Solidi A 210:2720–2724

    CAS  Google Scholar 

  26. Desai UV, Xu CK, Wu JM, Gao D (2013) Hybrid TiO2–SnO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 117:3232–3239

    CAS  Google Scholar 

  27. Luo JS, Ma L, He TC, Ng CF, Wang SJ, Sun HD, Fan HJ (2012) TiO2/(CdS, CdSe, CdSes) nanorod heterostructures and photoelectrochemical properties. J Phys Chem C 116:11956–11963

    CAS  Google Scholar 

  28. Gao Y, Xu J, Shi S, Dong H, Cheng Y, Wei C, Zhang X, Yin S, Li L (2018) TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse. ACS Appl Mater Interfaces 10:11269–11279

    CAS  Google Scholar 

  29. Zheng L, Teng F, Zhang Z, Zhao B, Fang X (2016) Large scale highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions. J Mater Chem C 4:10032–10039

    CAS  Google Scholar 

  30. Roy A, Lingampalli SR, Nassar IM, Rao CNR (2016) Effectiveness of NiO in replacing Pt in the photochemical generation of hydrogen by (TiO2)1−x (NiO)x/Cd 0.8 Zn 0.2 s heterostructures. Solid State Commun 243:1–6

    CAS  Google Scholar 

  31. Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y (2010) Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. Appl Mater Interfaces 2:2915–2923

    CAS  Google Scholar 

  32. Kim JH, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett 10:4099–4104

    CAS  Google Scholar 

  33. Cai GF, Tu JP, Zhou D, Li L, Zhang JH, Wang XL, Gu CD (2014) Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application. J Phys Chem C 118:6690–6696

    CAS  Google Scholar 

  34. Li LL, Cheng B, Wang YX, Yu JG (2015) Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers. J Colloid Interface Sci 449:115–121

    CAS  Google Scholar 

  35. Noothongkaew S, Han JK, Lee YB, Thumthan O, An KS (2017) Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors. Prog Nat Sci Mater Int 27(6):641–646

    CAS  Google Scholar 

  36. Wang LL, Zhang SC, Wu XM (2011) Synthesis and lithium storage properties of NiO@TiO2 nanotube heterojunction arrays. Chem Lett 40:1428–1430

    CAS  Google Scholar 

  37. Hou L, Li S, Lin Y, Wang D, Xie T (2016) Photogenerated charges transfer across the interface between NiO and TiO2 nanotube arrays for photocatalytic degradation a surface photovoltage study. J Colloid Interface Sci 464:96–102

    CAS  Google Scholar 

  38. Ku Y, Lin CN, Hou WM (2011) Characterization of coupled NiO/TiO2 photocatalyst for photocatalytic reduction of Cr(VI) in aqueous solution. J Mol Catal A Chem 349:20–27

    CAS  Google Scholar 

  39. Echresh A, Chey CO, Shoushtari MZ, Khranovskyy V, Nur O, Willander M (2015) UV photo detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J Alloys compd 632:165–171

    CAS  Google Scholar 

  40. Metka B, Ita J, Rok Z, Matjaz V, Ales I, Miran M (2019) Plasma-induced crystallization of TiO2 nanotubes. Materials 12:626

    Google Scholar 

  41. Uddin MT, Nicolas Y, Olivier C, Jaegermann W, Rockstroh N, Junge H, Toupance T (2017) Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Phys Chem Chem Phys 19:19279–19288

    CAS  Google Scholar 

  42. Popa M, Diamandescu L, Vasiliu F et al (2009) Synthesis structural characterization and photocatalytic properties of iron-doped TiO2 aerogels. J Mater Sci 44:358–364. https://doi.org/10.1007/s10853-008-3147-3

    Article  CAS  Google Scholar 

  43. Pal M, Pal U, Jiménez JMGY, Rodríguez FP (2012) Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res Lett 7:1–12

    Google Scholar 

  44. Sim LC, Ng KW, Ibrahim S, Saravanan P (2013) Preparation of improved p–n junction NiO/TiO2 nanotubes for solar-energydriven light photocatalysis. Int J Photoenergy 2013:10

    Google Scholar 

  45. Pfeifer V, Erhart P, Li S et al (2013) Energy band alignment between anatase and rutile TiO2. J Phys Chem Lett 4:4182–4187

    CAS  Google Scholar 

  46. Zabova H, Sobek J, Cirkva V, Solcova O, Kment S, Hajek M (2009) Efficient reparation of nanocrystalline anatase TiO2 and V/TiO2 thin layers using microwave drying and/or microwave calcination technique. J Solid State Chem 182:3387–3392

    CAS  Google Scholar 

  47. Yakuphanoglu F, Caglar Y, Caglar M, Ilican S (2010) ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate. Mater Sci Semicond Process 13:137–140

    CAS  Google Scholar 

  48. Moons E, Goossens A, Savenije T (1997) Surface photovoltage of porphyrin layers using the Kelvin probe technique. J Phys Chem B 101:8492–8498

    CAS  Google Scholar 

  49. Greiner MT, Helander GM, Wang ZB, Tang WM, Lu ZH (2010) Effects of processing conditions on the work function and energy level alignment of NiO thin films. J Phys Chem C 114:19777–19781

    CAS  Google Scholar 

  50. Zhang Y, Li X, Hua X, Ma N, Chen D, Wang H (2009) Sunlight photocatalysis in coral-like TiO2 film. Scr Mater 61:296–299

    CAS  Google Scholar 

  51. Wu Z, Wang Y, Sun L, Mao Y, Wanga M, Lina C (2014) An ultrasound-assisted deposition of NiO nanoparticles on TiO2 nanotube arrays for enhanced photocatalytic activity. J Mater Chem A 2:8223–8229

    CAS  Google Scholar 

  52. Zhang K, Yang Z, Wang M, Cao M, Sun Z, Shao J (2017) Low temperature annealed ZnO film UV photodetector with fast photoresponse. Sens Actuators A 253:173–180

    Google Scholar 

  53. Enachi M, Braniste T, Borodin E, Postolache V (2013) Relaxation of photoconductivity and persistent photoconductivity in TiO2 nanotubes. In: 2nd international conference on nanotechnologies and biomedical engineering. Chisinau, April 18–20, pp 67–70

  54. Zheng L, Hu K, Teng F, Fang X (2017) Novel UV–visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction. Small 13:1602448

    Google Scholar 

  55. de Arquer FG, Armin A, Meredith P, Sargent EH (2017) Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2:16100

    Google Scholar 

  56. Mo SD, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B 51:13023–13032

    CAS  Google Scholar 

  57. Gao A, Xu J, Shi S, Dong H, Cheng Y, Wei C, Zhang X, Yin Li L (2018) TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse. ACS Appl Mater Interfaces 10(13):11269–11279

    CAS  Google Scholar 

  58. Feng XL, Jiu ZW, Yi W, Yi L, Lin L, Yang G, Lin BL (2017) Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection. Appl Surf Sci 426:391–398

    Google Scholar 

  59. Ouyang W, Teng F, Fang X (2018) High performance BiOCl nanosheets/TiO2 nanotube Arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv Funct Mater 28:1707178–1707189

    Google Scholar 

  60. Li H, Yang D, Zhang T et al (2019) Flexible, UV-responsive perovskite photodetectors with low driving voltage. J Mater Sci 54:11556–11563. https://doi.org/10.1007/s10853-019-03721-3

    Article  CAS  Google Scholar 

  61. Xu X, Chen J, Cai S et al (2018) A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater 30:1803165–1803172

    Google Scholar 

  62. Zhang Z, Ning Y, Fang X (2019) From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors. J Mater Chem C 7:223–229

    CAS  Google Scholar 

  63. Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A (2014) Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci 7:1377–1381

    CAS  Google Scholar 

  64. Yang ZG, Zhu LP, Guo YM, Tian W, Ye ZZ, Zhao BH (2011) Valence band offset of p-NiO/n-ZnO heterojunction measured by X-ray photoelectron spectroscopy. Phys Lett A 375:1760–1763

    CAS  Google Scholar 

  65. Ibupoto ZH, Abbasi MA, Liu X, AlSalhi MS, Willander M (2014) The synthesis of NiO/TiO2 heterostructures and their valence band offset determination. J Nanomater 14:1–6

    Google Scholar 

  66. Nunes D, Pimentel A, Araujo A et al (2018) Enhanced UV flexible photodetectors and photocatalysts based on TiO2 nanoplatforms. Top Catal 61:1591–1606

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Research Council of Thailand (NRCT) for financial support, Ubon Ratchathani University and BL3.2Ua:PES of Synchrotron Light Research Institute, Thailand for providing research equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Noothongkaew.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pansri, S., Supruangnet, R., Nakajima, H. et al. Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors. J Mater Sci 55, 4332–4344 (2020). https://doi.org/10.1007/s10853-019-04305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04305-x

Navigation