Skip to main content
Log in

Performance of Erbium-doped TiO2 thin film grown by physical vapor deposition technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Undoped and Erbium-doped TiO2 thin films (Er:TiO2 TFs) were fabricated on the n-type Si substrate using physical vapour deposition technique. Field emission scanning electron microscope showed the morphological change in the structure of Er:TiO2 TF as compared to undoped sample. Energy dispersive X-ray spectroscopy (EDX) confirmed the Er doping in the TiO2 thin film (TF). The XRD and Raman spectrum showed the presence of anatase phase TiO2 and Er2O3 in the Er:TiO2 TF. The Raman scattering depicted additional number of vibrational modes for Er:TiO2 TF due to the presence of Er as compared to the undoped TiO2 TF. The UV–Vis absorption measurement showed that Er:TiO2 TF had approximately 1.2 times more absorption over the undoped TiO2 TF in the range of 300–400 nm. The main band transition, i.e., the transition between the oxygen (2p) state and the Ti (3d) state was obtained at ~3.0 eV for undoped TiO2 and at ~3.2 eV for Er:TiO2 TF, respectively. The photo responsivity measurement was done on both the detectors, where Er:TiO2 TF detector showed better detectivity (D *), noise equivalent power and temporal response as compared to undoped detector under ultra-violet illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Cheong, K. Chang, Y. Lai, S. Ho, I. Sou, K. Tam, IEEE Trans. Ind. Electron. 58(11), 5271–5277 (2011)

    Article  Google Scholar 

  2. S.I. Inamdar, K.Y. Rajpure, J. Alloys Compd. 595, 55–59 (2014)

    Article  Google Scholar 

  3. J.T. Clarke, W.R. Skinner, M.B. Vincent, T. Irgang, V. Suratkal, H. Grassl, J.T. Trauger, Appl. Opt. 38, 1803–1813 (1999)

    Article  ADS  Google Scholar 

  4. L. Shi, S. Nihtianov, IEEE Sens. J. 12, 2453–2459 (2012)

    Article  Google Scholar 

  5. G. Bertuccio, D. Puglisi, L. Torrisi, C. Lanzieri, Appl. Surf. Sci. 272, 128–131 (2013)

    Article  ADS  Google Scholar 

  6. A. Sciuto, M. Mazzillo, P. Badala, M. Scuderi, B. Carbone, S. Coffa, IEEE Photonics Technol. Lett. 26, 1782–1785 (2014)

    Article  ADS  Google Scholar 

  7. X. Sun, D. Li, H. Jiang, Z. Li, H. Song, Y. Chen, G. Miao, Appl. Phys. Lett. 98, 121117-1–121117-3 (2011)

    ADS  Google Scholar 

  8. A. Szyszka, L. Lupina, G. Lupina, M. Mazur, M.A. Schubert, P. Storck, S.B. Thapa, T. Schroeder, Appl. Phys. Lett. 104, 011106-1–011106-5 (2014)

    Article  ADS  Google Scholar 

  9. F. Xie, H. Lu, D. Chen, X. Ji, F. Yan, R. Zhang, Y. Zheng, L. Li, J. Zhou, IEEE Sens. J. 12, 2086–2090 (2012)

    Article  Google Scholar 

  10. Y.K. Su, S.M. Peng, L.W. Ji, C.Z. Wu, W.B. Cheng, C.H. Liu, Langmuir 26, 603–606 (2010)

    Article  Google Scholar 

  11. G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, Appl. Phys. Lett. 99, 203105-1–203105-3 (2011)

    ADS  Google Scholar 

  12. A.K. Tiwari, A. Mondal, B.K. Mahajan, B. Choudhuri, T. Goswami, M.B. Sarkar, S. Chakrabartty, C. Ngangbam, S. Saha, J. Nanosci. Nanotechnol. 15, 5099–5104 (2015)

    Article  Google Scholar 

  13. A. Mondal, B. Shougaijam, T. Goswami, J.C. Dhar, N.K. Singh, S. Choudhury, K.K. Chattopadhay, Appl. Phys. A 115, 353–358 (2014)

    Article  ADS  Google Scholar 

  14. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)

    Article  ADS  Google Scholar 

  15. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Nanotechnology 19, 145605-1–145605-10 (2008)

    Article  ADS  Google Scholar 

  16. F. Giordano, A. Abate, J. Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Graetzelb, Nat. Commun. 7, 10379-1–10379-6 (2016). doi:10.1038/ncomms10379

    ADS  Google Scholar 

  17. K. Mun, S.D. Alvarez, W. Choi, M.J. Sailor, ACS Nano (4), 2070–2076 (2010)

    Article  Google Scholar 

  18. J. Park, T. Jin, C. Liu, G. Li, M. Yan, ACS Omega 1, 351–356 (2016)

    Article  Google Scholar 

  19. Z. Hou, Y. Zhang, K. Deng, Y. Chen, X. Li, X. Deng, Z. Cheng, H. Lian, C. Li, J. Lin, ACS Nano 9, 2584–2599 (2015)

    Article  Google Scholar 

  20. V.G. Deepagan, D.G. You, W. Um, H. Ko, S. Kwon, K.Y. Choi, G. Yi, J.Y. Lee, D.S. Lee, K. Kim, I.C. Kwon, J.H. Park, Nano Lett. 16, 6257–6264 (2016)

    Article  ADS  Google Scholar 

  21. P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, J. Phys. D Appl. Phys. 45, 135102-1–135102-5 (2012)

    Article  ADS  Google Scholar 

  22. H. Zhang, S. Ruan, H. Li, M. Zhang, K. Lv, C. Feng, W. Chen, IEEE Electron Device Lett. 33, 83–85 (2012)

    Article  ADS  Google Scholar 

  23. B.J. Morgan, G.W. Watson, J. Phys. Chem. C 114, 2321–2328 (2010)

    Article  Google Scholar 

  24. S.R. Johannsen, L.R. Lauridsen, B. Julsgaard, P.T. Neuvonen, S.K. Ram, A.N. Larsen, Thin Solid Films 550, 499–503 (2014)

    Article  ADS  Google Scholar 

  25. S.P. Madsen, S.R. Johannsen, B.R. Jeppesen, J.V. Nygaard, P.B. Jensen, J. Chevallier, B. Julsgaard, P. Balling, A.N. Larsen, Energy Procedia 77, 478–486 (2015)

    Article  Google Scholar 

  26. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, A. Leitenstorfer, Nat. Photonics 4, 33–36 (2010)

    Article  ADS  Google Scholar 

  27. D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, Appl. Phys. Lett. 102, 151104-1–151104-4 (2013)

    ADS  Google Scholar 

  28. A. Anopchenko, A. Tengattini, A. Marconi, N. Prtljaga, J.M. Ramírez, O. Jambois, Y. Berencén, D. Navarro-Urrios, B. Garrido, F. Milesi, J.-P. Colonna, J.-M. Fedeli, L. Pavesi, J. Appl. Phys. 111, 063102-1–063102-5 (2012)

    Article  ADS  Google Scholar 

  29. Anupam Ghosh, Aniruddha Mondal, Avishek Das, Sanatan Chattopadhyay, Kalyan Kumar Chattopadhyay, J. Alloy. Compd. 695, 1260–1265 (2017)

    Article  Google Scholar 

  30. M.B. Sarkar, A. Mondal, B. Choudhuri, B.K. Mahajan, S. Chakrabartty, C. Ngangbam, J. Alloy. Compd. 615, 440–445 (2014)

    Article  Google Scholar 

  31. E.T. Bender, R. Wang, M.T. Aljarrah, E.A. Evans, R.D. Ramsier, J. Vac. Sci. Technol. A 25, 922–926 (2007)

    Article  Google Scholar 

  32. R.J. Deokate, S.M. Pawar, A.V. Moholkar, V.S. Sawant, C.A. Pawar, C.H. Bhosale, K.Y. Rajpure, Appl. Surf. Sci. 254, 2187–2195 (2008)

    Article  ADS  Google Scholar 

  33. D.Y. Lee, J. Kim, J. Park, Y. Kim, I. Lee, M. Lee, B. Kim, Curr. Appl. Phys. 13, 1301–1305 (2013)

    Article  ADS  Google Scholar 

  34. X. Yu, B. Kim, Y.K. Kim, ACS Catal. 3, 2479–2486 (2013)

    Article  Google Scholar 

  35. Y. Badr, I.K. Battisha, A. Salah, M.A. Salem, Indian J. Pure Appl. Phys. 46, 706–711 (2008)

    Google Scholar 

  36. M.V. Abrashev, N.D. Todorov, J. Geshev, J. Appl. Phys. 116, 103508-1–103508-7 (2014)

    Article  ADS  Google Scholar 

  37. R. Palomino-Merino, P. Trejo-Garcia, O. Portillo-Moreno, S. Jiménez-Sandoval, S.A. Tomás, S.A.O. Zelaya-Angel, R. Lozada-Morales, V.M. Castaño, Opt. Mater. 46, 345–349 (2015)

    Article  ADS  Google Scholar 

  38. H. Tang, F. Levy, H. Berger, P.E. Schmid, Phys. Rev. B 52, 7771–7774 (1995)

    Article  ADS  Google Scholar 

  39. N.R. Mathews, E.R. Morales, M.A. Cortés-Jacome, J.A. Toledo, Antonio. Sol. Energy 83, 1499–1508 (2009)

    Article  ADS  Google Scholar 

  40. S. Majumder, D. Paramanik, V. Solanki, B.P. Bag, S. Varma, Appl. Phys. Lett. 98, 053105-1–053105-3 (2011)

    Article  ADS  Google Scholar 

  41. D. Scoca, M. Morales, R. Merlo, F. Alvarez, A.R. Zanatta, J. Appl. Phys. 117, 205304-1–205304-2 (2015)

    Article  ADS  Google Scholar 

  42. A. Mondal, N.K. Singh, P. Chinnamuthu, J.C. Dhar, A. Bhattacharyya, S. Choudhury, IEEE Photonics Technol. Lett. 24, 2020–2023 (2012)

    Article  ADS  Google Scholar 

  43. S.N. Das, K.J. Moon, J.P. Kar, J.H. Choi, J. Xiong, Appl. Phys. Lett. 97, 022103-1–022103-3 (2010)

    ADS  Google Scholar 

  44. H. Liu, W. Lin, W. Sun, S. Wei, S. Yu, J. Mater. Sci. Semiconductor Process 57, 90–94 (2017)

    Article  Google Scholar 

  45. S.S. Li, Semiconductor Physical Electronics, 2nd edn. (Springer-Verlag, New York, 2006)

    Book  Google Scholar 

  46. S. Chang, B. Duan, C. Hsiao, S. Young, B. Wang, T. Kao, K. Tsai, S. Wu, IEEE Photonics Technol. Lett. 25, 2043–2046 (2013)

    Article  ADS  Google Scholar 

  47. P. Chinnamuthu, A. Mondal, J.C. Dhar, N.K. Singh, Jpn. J. Appl. Phys. 54, 06FJ01-1–06FJ01-3 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the COE in Advanced materials of NIT Durgapur for providing the FESEM facility, Dept. of Physics of NIT Nagaland for XRD analysis of the samples and the CRNS, University of Calcutta, for EDAX analysis of the samples. The authors are also grateful to Dr. Ardhendu Saha of NIT Agartala, Department of Electrical Engineering, for providing the optical absorption measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, R., Ghosh, A., Dwivedi, S.M.M.D. et al. Performance of Erbium-doped TiO2 thin film grown by physical vapor deposition technique. Appl. Phys. A 123, 573 (2017). https://doi.org/10.1007/s00339-017-1180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1180-2

Navigation