Skip to main content
Log in

Solution-processed nitrogen-doped graphene quantum dots/perovskite composite heterojunction for boosting performance of anatase titanium dioxide (TiO2)-based UV photodetector

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this work, a facile and low-cost method is introduced to boost performance of TiO2-based UV photodetector (PD). The method involves addition of a solution-processed GQDs-CsPbBr3 composite layer to the TiO2 film to fabricate a high-performance and stable hybrid photodetector based on TiO2/GQDs-CsPbBr3 bilayer heterojunction. The TiO2/GQDs-CsPbBr3 bilayer heterojunction was characterized with several techniques. The ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectrometers reveal that the absorption and emission of the TiO2/GQDs-CsPbBr3 bilayer heterojunction have significantly enhanced compared with that of the anatase TiO2 film, without the GQDs-CsPbBr3 composite layer. In addition, The hybrid photodetector shows a low dark current (ID = 0.13 nA), a high light current (IL = 343,626 nA), an on/off ratio (2.69 × 106), a responsivity (R = 7.11 A/W), and a specific detectivity (D* = 3.32 × 1013 J). The responsivity of the hybrid was improved by 64 times in magnitudes compared with that of the TiO2 without the GQDs-CsPbBr3 composite layer. Moreover, the performance of the hybrid photodetector not only outdo the performance of reported PDs based on wide bandgap materials/perovskite and 2D materials/2D materials bilayer heterostructure, but also performance of PDs based on 2D materials/2D materials/2D materials and silicon/2D materials/2D materials triple-layer heterostructure. The enhanced performance of the hybrid PD was due to the excellent alignment between the anatase TiO2, GQDs, and CsPbBr3, which enabled the TiO2/GQDs-CsPbBr3 bilayer heterojunction to reduce recombination process and increase photon-absorption rate. These results pave the way for enhancing the wide bandgap materials-based UV optoelectronics with the solution-processed and low-cost GQDs-CsPbBr3 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ray R, Nakka N, Pal SK (2020) High-performance perovskite photodetectors based on CH3NH3PbBr3 quantum dot/TiO2 heterojunction. Nanotechnology 32:085201. https://doi.org/10.1088/1361-6528/ABC8B2

  2. Wang M, Shi Y, Bian J, Dong Q, Sun H, Liu H, Luo Y, Zhang Y (2016) Electroluminescence from perovskite LEDs with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO. Chem Phys Lett 662:176–181. https://doi.org/10.1016/J.CPLETT.2016.09.041

    Article  CAS  Google Scholar 

  3. Hu W, Yang S, Yang S (2020) Surface modification of TiO2 for perovskite solar cells. Trends Chem 2:148–162. https://doi.org/10.1016/J.TRECHM.2019.11.002

    Article  CAS  Google Scholar 

  4. Reddy YAK, Ajitha B, Sreedhar A, Varrla E (2019) Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films. Appl Surf Sci 494:575–582. https://doi.org/10.1016/J.APSUSC.2019.07.124

    Article  CAS  Google Scholar 

  5. Yi X, Wang Y, Chen N, Huang Z, Ren Z, Li H, Lin T, Li C, Wang J (2018) A broad-spectral-response perovskite photodetector with a high on/off ratio and high detectivity. Mater Chem Front 2:1847–1852. https://doi.org/10.1039/C8QM00303C

    Article  CAS  Google Scholar 

  6. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al-Sayari S, Kim DE, Lee T (2015) Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics (Adv. Funct. Mater. 21/2015). Adv Funct Mater 25:3105–3105. https://doi.org/10.1002/ADFM.201570139

    Article  Google Scholar 

  7. Lian M, Sun J, Jiang D, Xu M, Wu Z, bin Xu B, Algadi H, Huang M, Guo Z (2022) Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring. Nanotechnology 34:025401. https://doi.org/10.1088/1361-6528/AC97F1

  8. Cai J, Murugadoss V, Jiang J, Gao X, Lin Z, Huang M, Guo J, Alsareii SA, Algadi H, Kathiresan M (2022) Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Advanced Composites and Hybrid Materials 2022 5:2 5:641–650. https://doi.org/10.1007/S42114-022-00473-8

  9. Zhang Y, Zheng J, Nan J, Gai C, Shao Q, Murugadoss V, Maganti S, Naik N, Algadi H, Huang M, Xu B, bin, Guo Z, (2023) Influence of mass ratio and calcination temperature on physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications. Particuology 74:141–155. https://doi.org/10.1016/J.PARTIC.2022.05.010

    Article  CAS  Google Scholar 

  10. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah RA, Abo-Dief HM, Algadi H, Huang N, Guo Z, Tang H (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222. https://doi.org/10.1016/J.JMST.2022.07.041

    Article  Google Scholar 

  11. Chen A, Wang C, Abu Ali OA, Mahmoud SF, Shi Y, Ji Y, Algadi H, El-Bahy SM, Huang M, Guo Z, Cui D, Wei H (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos Part A Appl Sci Manuf 163:107174. https://doi.org/10.1016/J.COMPOSITESA.2022.107174

  12. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu B, bin, Sridhar D, Algadi H, Guo Z, Du W, (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/J.JMST.2022.10.007

    Article  Google Scholar 

  13. Yi X, Ren Z, Chen N, Li C, Zhong X, Yang S, Wang J (2017) TiO2 Nanocrystal/perovskite bilayer for high-performance photodetectors. Adv Electron Mater 3:. https://doi.org/10.1002/aelm.201700251

  14. Zhou L, Yu K, Yang F, Zheng J, Zuo Y, Li C, Cheng B, Wang Q (2017) All-inorganic perovskite quantum dot/mesoporous TiO2composite-based photodetectors with enhanced performance. Dalton Trans 46:1766–1769. https://doi.org/10.1039/c6dt04758k

    Article  CAS  Google Scholar 

  15. Khan AA, Yu Z, Khan U, Dong L (2018) Solution processed trilayer structure for high-performance perovskite photodetector. Nanoscale Res Lett 13:1–10. https://doi.org/10.1186/S11671-018-2808-7/FIGURES/8

    Article  Google Scholar 

  16. Sanehira EM, Marshall AR, Christians JA, Harvey SP, Ciesielski PN, Wheeler LM, Schulz P, Lin LY, Beard MC, Luther JM (2017) Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv 3:eaao4204. https://doi.org/10.1126/sciadv.aao4204

  17. Dong Y, Zou Y, Song J, Song X, Zeng H (2017) Recent progress of metal halide perovskite photodetectors. J Mater Chem C Mater 5:11369–11394. https://doi.org/10.1039/C7TC03612D

    Article  CAS  Google Scholar 

  18. Mei F, Sun D, Mei S, Feng J, Zhou Y, Xu J (2019) Advances in physics : X recent progress in perovskite-based photodetectors : the design of materials and structures. Adv Phys X 4:. https://doi.org/10.1080/23746149.2019.1592709

  19. Nair PB, Justinvictor VB, Daniel GP, Joy K, James Raju KC, Devraj Kumar D, Thomas P, v. (2014) Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films. Progress in Natural Science: Materials International 24:218–225. https://doi.org/10.1016/J.PNSC.2014.05.010

    Article  CAS  Google Scholar 

  20. Haider AJ, Jameel ZN, Al-Hussaini IHM (2019) Review on: titanium dioxide applications. Energy Procedia 157:17–29. https://doi.org/10.1016/J.EGYPRO.2018.11.159

    Article  CAS  Google Scholar 

  21. Hong K, van Le Q, Kim SY, Jang HW (2018) Low-dimensional halide perovskites: review and issues. J Mater Chem C Mater 6:2189–2209. https://doi.org/10.1039/C7TC05658C

    Article  CAS  Google Scholar 

  22. Wang S, Cole IS, Li Q (2016) Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications. Chem Commun 52:9208–9211. https://doi.org/10.1039/C6CC03302D

    Article  CAS  Google Scholar 

  23. Sudhagar P, Herraiz-Cardona I, Park H, Song T, Noh SH, Gimenez S, Sero IM, Fabregat-Santiago F, Bisquert J, Terashima C, Paik U, Kang YS, Fujishima A, Han TH (2016) Exploring graphene quantum dots/TiO2 interface in photoelectrochemical reactions: solar to fuel conversion. Electrochim Acta 187:249–255. https://doi.org/10.1016/J.ELECTACTA.2015.11.048

    Article  CAS  Google Scholar 

  24. Hao X, Jin Z, Xu J, Min S, Lu G (2016) Functionalization of TiO2 with graphene quantum dots for efficient photocatalytic hydrogen evolution. Superlattices Microstruct 94:237–244. https://doi.org/10.1016/J.SPMI.2016.04.024

    Article  CAS  Google Scholar 

  25. Nguyen DA, Oh HM, Duong NT, Bang S, Yoon SJ, Jeong MS (2018) Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots. ACS Appl Mater Interfaces 10:10322–10329. https://doi.org/10.1021/ACSAMI.7B18419

    Article  CAS  Google Scholar 

  26. Ghosh D, Sarkar K, Devi P, Kim KH, Kumar P (2021) Current and future perspectives of carbon and graphene quantum dots: from synthesis to strategy for building optoelectronic and energy devices. Renewable and Sustainable Energy Reviews 135:110391. https://doi.org/10.1016/J.RSER.2020.110391

  27. Litvin AP, Zhang X, Ushakova EV, Rogach AL (2021) Carbon nanoparticles as versatile auxiliary components of perovskite-based optoelectronic devices. Adv Funct Mater 31:2010768. https://doi.org/10.1002/ADFM.202010768

    Article  CAS  Google Scholar 

  28. Algadi H, Mahata C, Sahoo B, Kim M, Koh WG, Lee T (2020) Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure. Org Electron 76:105444. https://doi.org/10.1016/J.ORGEL.2019.105444

  29. Zhou B, Jiang X, Liu Z, Shen R, Rogachev A, v. (2013) Preparation and characterization of TiO2 thin film by thermal oxidation of sputtered Ti film. Mater Sci Semicond Process 16:513–519. https://doi.org/10.1016/J.MSSP.2012.05.001

    Article  CAS  Google Scholar 

  30. Huang H, Xie Y, Zhang Z, Zhang F, Xu Q, Wu Z (2014) Growth and fabrication of sputtered TiO2 based ultraviolet detectors. Appl Surf Sci 293:248–254. https://doi.org/10.1016/J.APSUSC.2013.12.142

    Article  CAS  Google Scholar 

  31. Algadi H, Albargi H, Umar A, Shkir M (2021) Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector. Advanced Composites and Hybrid Materials 2021 4:4 4:1354–1366. https://doi.org/10.1007/S42114-021-00355-5

  32. Algadi H, Mahata C, Woo J, Lee M, Kim M, Lee T (2019) Enhanced photoresponsivity of all-inorganic (CsPbBr 3) perovskite nanosheets photodetector with carbon nanodots (CDs). Electronics. 8:678. https://doi.org/10.3390/ELECTRONICS8060678

  33. Algadi H, Umar A, Albargi H, Alsuwian T, Baskoutas S (2021) Carbon nanodots as a potential transport layer for boosting performance of all-inorganic perovskite nanocrystals-based photodetector. Crystals. 11:717. https://doi.org/10.3390/CRYST11060717

  34. Tetsuka H, Nagoya A, Fukusumi T, Matsui T (2016) Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater 28:4632–4638. https://doi.org/10.1002/ADMA.201600058

    Article  CAS  Google Scholar 

  35. Zhang Z, Li Z, Zhao Y, Bi X, Zhang Z, Long Z, Liu Z, Zhang L, Cai W, Liu Y, Fan R (2022) Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv Compos Hybrid Mater 5:3176–3189. https://doi.org/10.1007/S42114-022-00445-Y/METRICS

    Article  CAS  Google Scholar 

  36. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:4 4:906–924. https://doi.org/10.1007/S42114-021-00358-2

  37. Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I, Du W, Hou C (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5:2 5:606–626. https://doi.org/10.1007/S42114-022-00500-8

  38. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30. https://doi.org/10.30919/ES8D1128

  39. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160. https://doi.org/10.1016/J.JMST.2022.03.012

    Article  Google Scholar 

  40. Feng S, Zhai F, Su H, Sridhar D, Algadi H, Xu B Bin, Pashameah RA, Alzahrani E, Abo-Dief HM, Ma Y, Li T, Guo Z (2023) Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater Today Phys 30:100950. https://doi.org/10.1016/J.MTPHYS.2022.100950

  41. Ping D, Yi F, Zhang G, Wu S, Fang S, Hu K, Bin XuB, Ren J, Guo Z (2023) NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J Mater Sci Technol 142:1–9. https://doi.org/10.1016/J.JMST.2022.10.006

    Article  Google Scholar 

  42. Algadi H, Das T, Ren J, Li H (2023) High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen doped graphene quantum dots (NH2 GQDs)/all-inorganic (CsPbBr 3) perovskite nanocrystals triple junction. Adv Compos Hybrid Mater 6:1–17. https://doi.org/10.1007/S42114-023-00634-3/METRICS

    Article  Google Scholar 

  43. Mu Q, Liu R, Kimura H, Li J, Jiang H, Zhang X, Yu Z, Sun X, Algadi H, Guo Z, Du W, Hou C (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6:1–11. https://doi.org/10.1007/S42114-022-00607-Y/METRICS

    Article  Google Scholar 

  44. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Bin XuB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/J.JMST.2022.12.003

    Article  Google Scholar 

  45. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/S42114-022-00556-6

    Article  CAS  Google Scholar 

  46. Zhang Y, Liu L, Zhao L, Hou C, Huang M, Algadi H, Li D, Xia Q, Wang J, Zhou Z, Han X, Long Y, Li Y, Zhang Z, Liu Y (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater 5:2601–2610. https://doi.org/10.1007/S42114-022-00535-X

    Article  CAS  Google Scholar 

  47. Dong Y, Gu Y, Zou Y, Song J, Xu L, Li J, Xue J, Li X, Zeng H (2016) Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small 12:5622–5632. https://doi.org/10.1002/SMLL.201602366

    Article  CAS  Google Scholar 

  48. Algadi H, Mahata C, Kim S, Dalapati GK (2020) Improvement of photoresponse properties of self-powered ITO/InP Schottky junction photodetector by interfacial ZnO passivation. J Electr Mater 50:4 50:1800–1806. https://doi.org/10.1007/S11664-020-08565-1

  49. Zhao J, Deng R, Qin J, Song J, Jiang D, Yao B, Li Y (2018) Photoresponse enhancement in SnO2-based ultraviolet photodetectors via coupling with surface plasmons of Ag particles. J Alloys Compd 748. https://doi.org/10.1016/j.jallcom.2018.03.180

  50. Gao C, Li X, Zhu X, Chen L, Wang Y, Teng F, Zhang Z, Duan H, Xie E (2014) High performance, self-powered UV-photodetector based on ultrathin, transparent, SnO2-TiO2 core-shell electrodes. J Alloys Compd 616. https://doi.org/10.1016/j.jallcom.2014.07.171

  51. Wang Y, Zhang Y, Lu Y, Xu W, Mu H, Chen C, Qiao H, Song J, Li S, Sun B, Cheng YB, Bao Q (2015) Hybrid graphene-perovskite phototransistors with ultrahigh responsivity and gain. Adv Opt Mater 3:1389–1396. https://doi.org/10.1002/adom.201500150

    Article  CAS  Google Scholar 

  52. Kwak D-H, Lim D-H, Ra H-S, Ramasamy P, Lee J-S (2016) High performance hybrid graphene–CsPbBr 3–x I x perovskite nanocrystal photodetector. RSC Adv 6:65252–65256. https://doi.org/10.1039/C6RA08699C

    Article  CAS  Google Scholar 

  53. Algadi H, Umar A, Albargi H, Alsuwian T, Baskoutas S (2021) Carbon nanodots as a potential transport layer for boosting performance of all-inorganic perovskite nanocrystals-based photodetector. Crystals (Basel) 11:717. https://doi.org/10.3390/cryst11060717

    Article  CAS  Google Scholar 

  54. Liu H, Zhang X, Zhang L, Yin Z, Wang D, Meng J, Jiang Q, Wang Y, You J (2017) A high-performance photodetector based on an inorganic perovskite–ZnO heterostructure. J Mater Chem C Mater 5:6115–6122. https://doi.org/10.1039/C7TC01998J

    Article  CAS  Google Scholar 

  55. Ma C, Shi Y, Hu W, Chiu M-H, Liu Z, Bera A, Li F, Wang H, Li L-J, Wu T, Ma C, Shi Y, Hu W, Chiu M, Liu Z, Bera A, Li F, Wang H, Li L, Wu T (2016) Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater 28:3683–3689. https://doi.org/10.1002/ADMA.201600069

    Article  CAS  Google Scholar 

  56. Song X, Liu X, Yu D, Huo C, Ji J, Li X, Zhang S, Zou Y, Zhu G, Wang Y, Wu M, Xie A, Zeng H (2018) Boosting two-dimensional MoS2/CsPbBr 3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces 10:2801–2809. https://doi.org/10.1021/ACSAMI.7B14745

    Article  CAS  Google Scholar 

  57. Kim CO, Hwang SW, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Kim JH, Lee KW, Choi SH, Hwang E (2014) High-performance graphene-quantum-dot photodetectors Sci Rep 4:4–9. https://doi.org/10.1038/srep05603

    Article  CAS  Google Scholar 

  58. Massicotte M, Schmidt P, Vialla F, Watanabe K, Taniguchi T, Tielrooij KJ, Koppens FHL (2016) Photo-thermionic effect in vertical graphene heterostructures. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms12174

  59. Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W, Lv Y, Yao S, Lu M, Chen Y, Ni Z, You Y, Zhang X, Qin S, Shi Y, Hu W, Xing D, Miao F (2016) Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett 16:2254–2259. https://doi.org/10.1021/ACS.NANOLETT.5B04538

    Article  CAS  Google Scholar 

  60. Kim W, Arpiainen S, Xue H, Soikkeli M, Qi M, Sun Z, Lipsanen H, Chaves FA, Jiménez D, Prunnila M (2018) Photoresponse of graphene-gated graphene-gase heterojunction devices. ACS Appl Nano Mater 1:3895–3902. https://doi.org/10.1021/ACSANM.8B00684

    Article  CAS  Google Scholar 

  61. Ma P, Flöry N, Salamin Y, Baeuerle B, Emboras A, Josten A, Taniguchi T, Watanabe K, Novotny L, Leuthold J (2018) Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics 5:1846–1852. https://doi.org/10.1021/ACSPHOTONICS.8B00068

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University, Najran, Kingdom of Saudi Arabia, for funding under the Research Collaboration funding program grant no. NU/NRP/SERC/11/29.

Author information

Authors and Affiliations

Authors

Contributions

HA contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HA, JR, and AA. JR and AA conducted data analysis and discussion. The manuscript was written by HA and JR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassan Algadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2174 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algadi, H., Ren, J. & Alqarni, A. Solution-processed nitrogen-doped graphene quantum dots/perovskite composite heterojunction for boosting performance of anatase titanium dioxide (TiO2)-based UV photodetector. Adv Compos Hybrid Mater 6, 86 (2023). https://doi.org/10.1007/s42114-023-00667-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00667-8

Keywords

Navigation