Skip to main content
Log in

Synthesis and Boosting the Morphological and Optical Characteristics of SiC/SrTiO3 Nanomaterials Doped PMMA/PEO for Tailored Optoelectronics Fields

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work aims to fabricate of SiC (silicon carbide)/SrTiO3 (strontium titanate) nanomaterials doped PMMA (polymethyl methacrylate)/ PEO (polyethylene oxide) to utilize in many electronics and optics nanodevices. The structural and optical properties of (PMMA-PEO/SiC-SrTiO3) nanostructures were investigated. The SEM and OM confirmed that good distribution of SiC-SrTiO3 NPs inside the matrix of PMMA-PEO. The results of optical properties for (PMMA-PEO/SiC-SrTiO3) nanostructures showed that the absorbance (A) enhanced of 47.5% at UV-spectra (λ = 300 nm) and 54.9% at visible- spectra (λ = 500 nm) and 61.4% at NIR-λ=800nm when the ratio of SiC /SrTiO3 NPs reached of 6.4 wt.%. These results make them as potential nanostructures to apply in optical and renewable energy fields. The energy gap reduced for allowed transition from 3.6 eV to 2.2 eV and from 3.1 eV to 1.5 eV for forbidden transition. The optical parameters of (PMMA-PEO) blend improved with rising in the SiC-SrTiO3 NPs concentrations, this performance made the (PMMA-PEO/SiC-SrTiO3) are suitable for several optics and nanoelectronics fields. Finally, the results of structural and optical characteristics indicated to the (PMMA–PEO/SiC-SrTiO3) nanostructures may be applied in various nanoelectronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Yes, the data are available.

References

  1. Habib AKMA et al (2021) A review: Energy storage system and balancing circuits for electric vehicle application. IET Power Electron 14(1):1–13. https://doi.org/10.1049/pel2.12013

    Article  Google Scholar 

  2. Subramanian C (2021) An appraisal on intelligent and smart systems. In: AIP Conference Proceedings 2316(1):020003. https://doi.org/10.1063/5.0037534

  3. Rodriguez RD et al (2021) Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration. Adv Funct Mater 31(17):2008818. https://doi.org/10.1002/adfm.202008818

    Article  CAS  Google Scholar 

  4. Wang J et al (2021) Structure code for advanced polymer electrolyte in lithium-ion batteries. Adv Funct Mater 31(12):2008208. https://doi.org/10.1002/adfm.202008208

    Article  CAS  Google Scholar 

  5. Xia Y et al (2021) A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv Mater 33(6):2000713. https://doi.org/10.1002/adma.202000713

    Article  CAS  Google Scholar 

  6. Rinaldi M et al. (2020) Additive manufacturing of polyether ether ketone (PEEK) for space applications: A nanosat polymeric structure. Polymers (Basel). 13(1). https://doi.org/10.3390/polym13010011

  7. Rajeh A, Morsi MA, Elashmawi IS (2019) Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: Combined FT-IR/DFT. Vacuum 159:430–440. https://doi.org/10.1016/j.vacuum.2018.10.066

    Article  CAS  Google Scholar 

  8. Hashim A, Hadi A (2017) A novel piezoelectric materials prepared from (Carboxymethyl Cellulose-Starch) blend-metal oxide nanocomposites. Sensor Lett. 15. https://doi.org/10.1166/sl.2017.3910

  9. Habbeb Majeed Ali, Hashim Ahmed, AbidAli Abdul-Raheem K (2011) The dielectric properties for (PMMA-LiF) composites. Eur J Sci Res 61(3):367–371

    Google Scholar 

  10. Farago B et al (2005) Collective motion in poly (ethylene oxide)/poly (methylmethacrylate) blends. Physical Review E 72(3):031809. https://doi.org/10.1103/PhysRevE.72.031809

    Article  CAS  Google Scholar 

  11. García Sakai V et al (2008) Dynamics of PEO in blends with PMMA: Study of the effects of blend composition via quasi-elastic neutron scattering. Macromolecules 41(10):3701–3710. https://doi.org/10.1021/ma0714870

    Article  CAS  Google Scholar 

  12. Brodeck M et al (2012) Single chain dynamic structure factor of poly(ethylene oxide) in dynamically asymmetric blends with poly(methyl methacrylate) Neutron scattering and molecular dynamics simulations. Macromolecules 45(1):536–542. https://doi.org/10.1021/ma2016634

    Article  CAS  Google Scholar 

  13. Andersson RL et al (2014) Micromechanics of ultra-toughened electrospun PMMA/PEO fibres as revealed by in-situ tensile testing in an electron microscope. Sci Rep 4(1):6335. https://doi.org/10.1038/srep06335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghelichi M et al (2013) Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: Investigating the effect of lithium salt. J Appl Polym Sci 129(4):1868. https://doi.org/10.1002/app.38897

    Article  CAS  Google Scholar 

  15. Aram E et al (2018) Chemically functionalized graphene nanosheets and their influence on thermal stability, mechanical, morphological, and electrical properties of poly(methyl methacrylate)/Poly(ethylene Oxide) blend. Polymer-Plastics Technol Eng 57(3):156–165. https://doi.org/10.1080/03602559.2017.1315642

    Article  CAS  Google Scholar 

  16. Choudhary S (2018) Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO–PMMA blend based polymer nanocomposites. J Polymer Res 25(5):116. https://doi.org/10.1007/s10965-018-1510-x

    Article  CAS  Google Scholar 

  17. de Carvalho LD, Peres BU, Maezono H, Shen Y, Haapasalo M, Jackson J, Carvalho RM, Manso AP (2019) Doxycycline release and antibacterial activity from PMMA/PEO electrospun fiber mats. J Appl Oral Sci 27:e20180663. https://doi.org/10.1590/1678-7757-2018-0663

  18. Abutalib MM, Rajeh A (2020) Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite. Journal of Organometallic Chemistry 918:121309. https://doi.org/10.1016/j.jorganchem.2020.121309

    Article  CAS  Google Scholar 

  19. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv Compos Hybrid Mater 2(1):162–175. https://doi.org/10.1007/s42114-019-00078-8

    Article  CAS  Google Scholar 

  20. Sengwa RJ, Choudhary S (2016) Dielectric dispersion and relaxation in polymer blend based nanodielectric film. Macromol Symp 362(1):132–138. https://doi.org/10.1002/masy.201400259

    Article  CAS  Google Scholar 

  21. Choudhary S (2017) Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. Compos Commun 5:54–63. https://doi.org/10.1016/j.coco.2017.07.004

    Article  Google Scholar 

  22. Phoon BL et al (2019) A review of synthesis and morphology of SrTiO3 for energy and other applications. Int J Energy Res 43(10):5151–5174. https://doi.org/10.1002/er.4505

    Article  CAS  Google Scholar 

  23. Zhang F et al. (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9. https://doi.org/10.3390/app9122489

  24. Aslam M et al (2018) The suitability of silicon carbide for photocatalytic water oxidation. Appl Nanosci 8(5):987–999. https://doi.org/10.1007/s13204-018-0772-2

    Article  CAS  Google Scholar 

  25. Al-Aaraji NAH, Hashim A, Hadi A et al (2022) Effect of silicon carbide nanoparticles addition on structural and dielectric characteristics of pva/cuo nanostructures for electronics devices. Silicon 14:4699–4705. https://doi.org/10.1007/s12633-021-01265-3

    Article  CAS  Google Scholar 

  26. Rashid FL, Hadi A, Abid AA, Hashim A (2019) Solar energy storage and release application of water – phase change material - (SnO2-TaC) and (SnO2–SiC) nanoparticles system. Int J Adv Appl Sci (IJAAS) 8(2):154–156. https://doi.org/10.11591/ijaas.v8.i2.pp154-156

    Article  Google Scholar 

  27. Hadi A, Ah-yasari AH, Hassan D (2020) Fabrication of new ceramics nanocomposites for solar energy storage and release. Bullet Electr Eng Inform 9(1). https://doi.org/10.11591/eei.v9i1.1323

  28. Meteab MH, Hashim A, Rabee BH (2023) Controlling the structural and dielectric characteristics of PS-PC/Co2O3-SiC hybrid nanocomposites for nanoelectronics applications. Silicon 15:251–261. https://doi.org/10.1007/s12633-022-02020-y

    Article  CAS  Google Scholar 

  29. Ahmed H, Hashim A (2023) Tuning the spectroscopic and electronic characteristics of ZnS/SiC nanostructures doped organic material for optical and nanoelectronics fields. Silicon 15:2339–2348. https://doi.org/10.1007/s12633-022-02173-w

    Article  CAS  Google Scholar 

  30. Meteab MH, Hashim A, Rabee BH (2023) Synthesis and characteristics of SiC/MnO2/PS/PC QuaternaryNanostructures for advanced nanodielectrics fields. Silicon 15:1609–1620. https://doi.org/10.1007/s12633-022-02114-7

    Article  CAS  Google Scholar 

  31. Kadhim AF, Hashim A (2023) Fabrication and tuning the structural and dielectric characteristics of PS/SiO2/SrTiO3 hybrid nanostructures for nanoelectronics and energy storage devices. Silicon 15:4613–4621. https://doi.org/10.1007/s12633-023-02381-y

    Article  CAS  Google Scholar 

  32. Kadhim AF, Hashim A (2023) Fabrication and augmented structural optical properties of PS/SiO2/SrTiO3 hybrid nanostructures for optical and photonics applications. Opt Quant Electron 55:432. https://doi.org/10.1007/s11082-023-04699-8

    Article  CAS  Google Scholar 

  33. Jaafar HK, Hashim A, Rabee BH (2023) Fabrication and tuning the morphological and optical characteristics of PMMA/PEO/SiC/BaTiO3 newly quaternary nanostructures for optical and quantum electronics fields. Opt Quant Electron 55:989. https://doi.org/10.1007/s11082-023-05208-7

    Article  CAS  Google Scholar 

  34. Ahmed G, Hashim A (2023) Synthesis of PMMA/PEG/Si3N4 nanostructures and exploring the structural and dielectric characteristics for flexible nanoelectronics applications. Silicon 15:3977–3985. https://doi.org/10.1007/s12633-023-02322-9

    Article  CAS  Google Scholar 

  35. Ahmed G, Hashim A (2023) Synthesis and tailoring morphological and optical characteristics of PMMA/PEG/Si3N4 hybrid nanomaterials for optics and quantum nanoelectronics applications. Silicon. https://doi.org/10.1007/s12633-023-02572-7

  36. Zhao C, Cheung CF, Xu P (2020) High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans 101:503–514. https://doi.org/10.1016/j.isatra.2020.01.038

    Article  PubMed  Google Scholar 

  37. Fan X, Wei G, Lin X, Wang X, Si Z, Zhang X,..., Zhao W (2020). Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter 2(6):1582-1593.https://doi.org/10.1016/j.matt.2020.04.001

  38. Yu H, Zhu J, Qiao R, Zhao N, Zhao M,..., Kong L (2022) Facile preparation and controllable absorption of a composite based on PMo12/Ag Nanoparticles: Photodegradation Activity and Mechanism. Chem Select 7(2):e202103668.https://doi.org/10.1002/slct.202103668

  39. Kong L, Liu Y, Dong L, Zhang L, Qiao L, Wang W,..., You H (2020). Enhanced red luminescence in CaAl12O19:Mn4+via doping Ga3+ for plant growth lighting. Dalton Trans 49(6):1947-1954.https://doi.org/10.1039/C9DT04086B

  40. Zhao W, Suo H, Wang S, Ma L, Wang L, Wang Q, ..., Zhang Z (2022). Mg gas infiltration for the fabrication of MgB2 pellets using nanosized and microsized B powders. J Eur Ceram Soc.https://doi.org/10.1016/j.jeurceramsoc.2022.08.029

  41. Chen H, Chen W, Liu X, Liu X (2021) Establishing the first hidden-charm pentaquark with strangeness. Eur Phys J C 81(5):409. https://doi.org/10.1140/epjc/s10052-021-09196-4

    Article  CAS  Google Scholar 

  42. Cai L, Lu Y, Zhu H (2023) Performance enhancement of on-chip optical switch and memory using Ge2Sb2Te5 slot-assisted microring resonator. Opt Lasers Eng 162:107436. https://doi.org/10.1016/j.optlaseng.2022.107436

    Article  Google Scholar 

  43. Fu, Q., Luo, K., Song, Y., Zhang, M., Zhang, S., Zhan, J.,..., Li, Y. (2022). Study of sea fog environment polarization transmission characteristics. Appl Sci 12(17). https://doi.org/10.3390/app12178892

  44. Gao J, Sun H, Han J, Sun Q, Zhong T (2022). Research on recognition method of electrical components based on FEYOLOV4-tiny. J ElectrEng Technol.https://doi.org/10.1007/s42835-022-01124-0

  45. Zhao Q, Liu J, Yang H, Liu H, Zeng G,..., Huang B (2022). High Birefringence D-Shaped germanium-doped photonic crystal fiber sensor. Micromachines, 13(6). https://doi.org/10.3390/mi13060826

  46. Yang H, Huang H, Liu X, Li Z, Li J, Zhang D,..., Liu J (2023). Sensing mechanism of an Au-TiO2-Ag nanograting based on Fano resonance effects. Appl Opt 62(17):4431-4438.https://doi.org/10.1364/AO.491732

  47. Guo R, Zhang S, Gao H, Senthil Murugan G, Liu T,..., Cheng Z (2023) Blazed subwavelength grating coupler. Photonics Res 11(2):189-195.https://doi.org/10.1364/PRJ.474199

  48. Wan D, Li T, Chen S, Chen W, Hu H, Set SY,..., Cheng Z (2023). Hyperuniform disordered solids with morphology engineering. Laser Photonics Rev 2300398. https://doi.org/10.1002/lpor.202300398

  49. Yang M, Liu W, Liu Z, Cai C, Wang Y,..., Yang J (2023). Binocular vision-based method used for determining the static and dynamic parameters of the long-stroke shakers in low-frequency vibration calibration. IEEE Trans Ind Electron 70(8):8537-8545.https://doi.org/10.1109/TIE.2022.3208559

  50. Li Y, Bai Q, Guan Y, Zhang P, Shen R, Lu L,..., Yao C (2022) In situ plasma cleaning of large-aperture optical components in ICF. Nucl Fusion 62(7):76023. https://doi.org/10.1088/1741-4326/ac555c

  51. Kong L, Liu G (2021) Synchrotron-based infrared microspectroscopy under high pressure: An introduction. Matter Radiat Extremes 6(6):68202. https://doi.org/10.1063/5.0071856

    Article  CAS  Google Scholar 

  52. Zhong J, Han M, Li C, Li R, He H (2023) Facile and scalable fabrication process of electroluminescent filament with high luminescent efficiency. Mater Lett 350:134868. https://doi.org/10.1016/j.matlet.2023.134868

    Article  CAS  Google Scholar 

  53. Gao S, Li H, Huang H, Kang R (2022) Grinding and lapping induced surface integrity of silicon wafers and its effect on chemical mechanical polishing. Appl Surf Sci 599:153982. https://doi.org/10.1016/j.apsusc.2022.153982

    Article  CAS  Google Scholar 

  54. Siddaiah T, Ojha P, Kumar NOGVR, Ramu C (2018) Structural, optical and thermal characterizations of PVA/MAA: EA polyblend films. Mater Res 21(5):e20170987. https://doi.org/10.1590/1980-5373-MR-2017-0987

  55. Fasasi AY et al (2018) Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Am J Mater Synth Process 3(2):12–22

    Google Scholar 

  56. Banerjee M, Jain A, Mukherjee G (2018) Spectroscopic evaluation of optical parameters of a transition metal salt filled polymer material. Def Sci J 68(2):225

    Article  CAS  Google Scholar 

  57. Abutalib MM, Rajeh A (2020) Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite. Physica B: Condensed Matter 578:411796. https://doi.org/10.1016/j.physb.2019.411796

    Article  CAS  Google Scholar 

  58. Aziz SB et al (2019) Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Res Physics 15:102776. https://doi.org/10.1016/j.rinp.2019.102776

    Article  Google Scholar 

  59. Al-Muntaser AA et al (2020) Enhancement of optical and electrical properties of PVC/PMMA blend films doped with Li4Ti5O12 nanoparticles. J Mater Res Technol 9(1):789–797. https://doi.org/10.1016/j.jmrt.2019.11.019

    Article  CAS  Google Scholar 

  60. Dhatarwal P, Sengwa RJ, Choudhary S (2020) Multifunctional (PVP/PEO)/SnO2 nanocomposites of tunable optical and dielectric properties. Optik 221:165368. https://doi.org/10.1016/j.ijleo.2020.165368

    Article  CAS  Google Scholar 

  61. Ahmed H, Hashim A (2022) Exploring the design, optical and electronic characteristics of silicon doped (PS-B) new structures for electronics and renewable approaches. Silicon 14:7025–7032. https://doi.org/10.1007/s12633-021-01465-x

    Article  CAS  Google Scholar 

  62. Ahmed H, Hashim A (2021) Structure, optical, electronic and chemical characteristics of novel (PVA-CoO) structure doped with silicon carbide. Silicon 13:4331–4344. https://doi.org/10.1007/s12633-020-00723-8

    Article  CAS  Google Scholar 

  63. Ahmed H, Hashim A (2020) Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J Mol Model 26:210. https://doi.org/10.1007/s00894-020-04479-1

    Article  CAS  PubMed  Google Scholar 

  64. Ahmed H, Hashim A (2021) Geometry optimization, optical and electronic characteristics of novel PVA/PEO/SIC structure for electronics applications. Silicon 13:2639–2644. https://doi.org/10.1007/s12633-020-00620-0

    Article  CAS  Google Scholar 

  65. Ahmed H, Hashim A (2021) Structural, optical and electronic properties of silicon carbide doped PVA/NIO for low cost electronics applications. Silicon 13:1509–1518. https://doi.org/10.1007/s12633-020-00543-w

    Article  CAS  Google Scholar 

  66. Imam NG, Mohamed MB (2016) Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra. J Mol Struct 1105:80–86. https://doi.org/10.1016/j.molstruc.2015.10.039

    Article  CAS  Google Scholar 

  67. Hashim A (2021) Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt Quant Electron 53:478. https://doi.org/10.1007/s11082-021-03100-w

    Article  CAS  Google Scholar 

  68. Rashid Farhan Lafta, Hashim Ahmed, Habeeb Majeed Ali, Salman Saba R, Ahmed Hind (2013) Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J Eng Appl Sci 8(5):137–139

    Google Scholar 

  69. Jasim Falah Ali, Hashim Ahmed, Hadi Angham G, Lafta Farhan, Salman Saba R, Ahmed Hind (2013) Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Res J Appl Sci 8(9):439–441

    Google Scholar 

  70. Hashim A, Jassim A (2017) Novel of (PVA-ST-PbO2) Bio nanocomposites: Preparation and properties for humidity sensors and radiation shielding applications, Sensor Letters. 15(12). https://doi.org/10.1166/sl.2018.3915

  71. Hashim A, Hadi A (2017) Synthesis and characterization of (MgO-Y2O3-CuO) nanocomposites for novel humidity sensor application. Sensor Lett 15. https://doi.org/10.1166/sl.2017.3900

  72. Al-Aaraji NAH, Hashim A, Hadi A et al (2022) Synthesis and enhanced optical characteristics of silicon carbide/copper oxide nanostructures doped transparent polymer for optics and photonics nanodevices. Silicon 14:10037–10044. https://doi.org/10.1007/s12633-022-01730-7

    Article  CAS  Google Scholar 

  73. Hashim A, Abbas MH, Al-Aaraji NAH et al (2023) Facile fabrication and developing the structural, optical and electrical properties of SiC/Y2O3 nanostructures doped pmma for optics and potential nanodevices. Silicon 15:1283–1290. https://doi.org/10.1007/s12633-022-02104-9

    Article  CAS  Google Scholar 

  74. Meteab MH, Hashim A, Rabee BH (2023) Synthesis and tailoring the morphological, optical, electronic and photodegradation characteristics of PS–PC/MnO2–SiC quaternary nanostructures. Opt Quant Electron 55:187. https://doi.org/10.1007/s11082-022-04447-4

    Article  CAS  Google Scholar 

  75. Hashim A, Hadi A, Al-Aaraji NAH (2023) Fabrication and augmented electrical and optical characteristics of PMMA/CoFe2O4/ZnCoFe2O4 hybrid nanocomposites for quantum optoelectronics nanosystems. Opt Quant Electron 55:716. https://doi.org/10.1007/s11082-023-04994-4

    Article  CAS  Google Scholar 

  76. Hashim A, Hadi A, Al-Aaraji NAH et al (2023) Fabrication and augmented structural, optical and electrical features of PVA/Fe2O3/SiC hybrid nanosystem for optics and nanoelectronics fields. Silicon 15:5725–5734. https://doi.org/10.1007/s12633-023-02471-x

    Article  CAS  Google Scholar 

  77. Abdelrazek EM et al (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized au nanoparticles. J Mater Res Technol 7(4):419–431. https://doi.org/10.1016/j.jmrt.2017.06.009

    Article  CAS  Google Scholar 

  78. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J Mater Sci: Mater Electron 30(13):12275–12294. https://doi.org/10.1007/s10854-019-01587-4

    Article  CAS  Google Scholar 

  79. Ahmed H, Hashim A (2022) Exploring the characteristics of new structure based on silicon doped organic blend for photonics and electronics applications. Silicon 14:4907–4914. https://doi.org/10.1007/s12633-021-01258-2

    Article  CAS  Google Scholar 

  80. Ahmed H, Hashim A (2022) Tuning the characteristics of novel (PVA-li-Si3N4) structures for renewable and electronics fields. Silicon 14:4079–4086. https://doi.org/10.1007/s12633-021-01186-1

    Article  CAS  Google Scholar 

  81. Ahmed H, Hashim A (2022) Design of Polymer/Lithium fluoride new structure for renewable and electronics applications. Trans Electr Electron Mater 23:237–246. https://doi.org/10.1007/s42341-021-00340-1

    Article  Google Scholar 

  82. Ahmed H, Hashim A (2021) Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches. Trans Electr Electron Mater 22:335–345. https://doi.org/10.1007/s42341-020-00244-6

    Article  Google Scholar 

  83. Hazim A, Abduljalil HM, Hashim A (2021) Design of PMMA doped with inorganic materials as promising structures for optoelectronics applications. Trans Electr Electron Mater 22:851–868. https://doi.org/10.1007/s42341-021-00308-1

    Article  Google Scholar 

  84. Hashim A, Al-Attiyah KHH, Obaid SF (2019) Fabrication of Novel (Biopolymer Blend-Lead Oxide Nanoparticles) Nanocomposites: Structural and Optical Properties for Low Cost Nuclear Radiation Shielding, Ukr. J Phys 64(2). https://doi.org/10.15407/ujpe64.2.157.

  85. Mohamed MB, Abdel-Kader MH (2020) Effect of annealed ZnS nanoparticles on the structural and optical properties of PVA polymer nanocomposite. Mater Chem Physics 241:122285. https://doi.org/10.1016/j.matchemphys.2019.122285

    Article  CAS  Google Scholar 

  86. Ahmed H, Hashim A (2022) Design and tailoring the optical and electronic characteristics of silicon doped PS/SnS2 new composites for Nano-semiconductors devices. Silicon 14:6637–6643. https://doi.org/10.1007/s12633-021-01449-x

    Article  CAS  Google Scholar 

  87. Hashim A, Hamad ZS (2018) Novel of (Niobium Carbide-Biopolymer Blend) Nanocomposites: Characterization for bioenvironmental applications. J Bionanosci 12(4). https://doi.org/10.1166/jbns.2018.1551

  88. Hashim A, Habeeb MA, Khalaf A, Hadi A (2017) Fabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural. Electr Opt Prop Humidity Sensors Appl Sensor Lett 15:589–596. https://doi.org/10.1166/sl.2017.3856

    Article  Google Scholar 

  89. Hashim A, Hadi A Abbas MH (2023) Synthesis and unraveling the morphological and optical features of PVP-Si3N4-Al2O3 nanostructures for optical and renewable energies fields. Silicon.https://doi.org/10.1007/s12633-023-02529-w

  90. Hashim A, Hadi A, Abbas MH (2023) Fabrication and unraveling the morphological, optical and electrical features of PVA/SnO2/SiC nanosystem for optics and nanoelectronics applications. Opt Quant Electron 55:642. https://doi.org/10.1007/s11082-023-04929-z

    Article  CAS  Google Scholar 

  91. Hashim A, Jassim A (2018) Novel of biodegradable polymers-inorganic nanoparticles: Structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J Bionanosci 12. https://doi.org/10.1166/jbns.2018.1518

  92. Jebur QM, Hashim A, Habeeb MA (2019) Structural, electrical and optical properties for (polyvinyl alcohol-polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans Electr Electron Mater 20:334–343. https://doi.org/10.1007/s42341-019-00121-x

    Article  Google Scholar 

  93. Soliman TS, Vshivkov SA, Elkalashy SI (2020) Structural, linear and nonlinear optical properties of ni nanoparticles – polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt Mater 107:110037. https://doi.org/10.1016/j.optmat.2020.110037

    Article  CAS  Google Scholar 

  94. Alsaad AM et al (2020) Spectroscopic characterization of optical and thermal properties of (PMMA-PVA) hybrid thin films doped with SiO2 nanoparticles. Res Phys 19:103463. https://doi.org/10.1016/j.rinp.2020.103463

    Article  Google Scholar 

  95. Sengwa RJ, Dhatarwal P (2021) Polymer nanocomposites comprising PMMA matrix and ZnO, SnO2, and TiO2 nanofillers: A comparative study of structural, optical, and dielectric properties for multifunctional technological applications. Opt Mater 113:110837. https://doi.org/10.1016/j.optmat.2021.110837

    Article  CAS  Google Scholar 

  96. Hegazy DE, Eid M, Madani M (2014) Effect of ni nano particles on thermal, optical and electrical behaviour of irradiated PVA/AAc films. Arab J Nucl Sci Appl 47(1):41–52

    Google Scholar 

  97. Agool IR, Mohammed Firas S, Hashim A (2015) The Effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend. Adv Environ Biol 9(11):1–10

    Google Scholar 

  98. Hadi Shaymaa, Hashim Ahmed, Jewad Alaa (2011) Optical properties of (PVA-LiF) composites. Aust J Basic Appl Sci 5(9):2192–2195

    CAS  Google Scholar 

  99. Rabee BH, Hashim A (2011) Synthesis and characterization of carbon nanotubes -polystyrene composites. Eur J Sci Res 60(2):247–254

    Google Scholar 

  100. Jasim FA, Lafta F, Hashim A, Ali M, Hadi AG (2013) Characterization of palm fronds-polystyrene composites. J Eng Appl Sci 8(5):140–142

    Google Scholar 

  101. Donya H et al (2020) Micro-structure and optical spectroscopy of PVA/IRON oxide polymer nanocomposites. J Mater Res Technol 9(4):9189–9194. https://doi.org/10.1016/j.jmrt.2020.06.040

    Article  CAS  Google Scholar 

  102. Fadil OB, Hashim A (2022) Fabrication and tailored optical characteristics of CeO2/SiO2 nanostructures doped PMMA for electronics and optics fields. Silicon 14:9845–9852. https://doi.org/10.1007/s12633-022-01728-1

    Article  CAS  Google Scholar 

  103. Hussien HAJ, Kadhim RG, Hashim A (2022) Investigating the low cost photodegradation performance against organic pollutants using CeO2/MnO2/ polymer blend nanostructures. Opt Quant Electron 54:704. https://doi.org/10.1007/s11082-022-04094-9

    Article  CAS  Google Scholar 

  104. Ahmed H, Hashim A, Abduljalil HM (2020) Determination of Optical Parameters of Films Of PVA/TiO2/SiC and PVA/MgO/SiC Nanocomposites For Optoelectronics and UV-Detectors, Ukr. J Phys 65(6). https://doi.org/10.15407/ujpe65.6.533

  105. Hassan D, Hashim A (2018) Preparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applications. J Bionanosci 12(3). https://doi.org/10.1166/jbns.2018.1537

  106. Hussien HAJ, Hashim A (2023) Synthesis and exploring the structural, electrical and optical characteristics of PVA/TiN/SiO2 hybrid nanosystem for photonics and electronics nanodevices. J Inorg Organomet Polym 33:2331–2345. https://doi.org/10.1007/s10904-023-02688-8

    Article  CAS  Google Scholar 

  107. Obaid WO, Hashim A (2022) Synthesis and augmented optical properties of PC/SIC/TAC hybrid nanostructures for potential and photonics fields. Silicon 14:11199–11207. https://doi.org/10.1007/s12633-022-01854-w

    Article  CAS  Google Scholar 

  108. Elsaeedy HI et al (2019) Nonlinear behavior of the current–voltage characteristics for erbium-doped PVA polymeric composite films. Appl Phys A 125(2):79. https://doi.org/10.1007/s00339-018-2375-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

University of Babylon.

Author information

Authors and Affiliations

Authors

Contributions

Hiba Kamil Jaafar, Ahmed Hashim and Bahaa H. Rabee wrote the main manuscript text, prepared figures and reviewed the manuscript.

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

No conflict of interest.

Ethics approval

Research involving human participants, their data or biological material.

The research is not involving the studies on human or their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaafar, H.K., Hashim, A. & Rabee, B.H. Synthesis and Boosting the Morphological and Optical Characteristics of SiC/SrTiO3 Nanomaterials Doped PMMA/PEO for Tailored Optoelectronics Fields. Silicon 16, 603–614 (2024). https://doi.org/10.1007/s12633-023-02706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02706-x

Keywords

Navigation