Skip to main content
Log in

Lead Selenide Thin Films Designed for Laser Sensing and Visible Light Communications

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Herein thin films of PbSe are coated onto amorphous glass, amorphous silicon (a−Si) and crystalline n−type Si (n−Si) wafers by the thermal evaporation technique under a vacuum pressure of 10−5 mbar. The films are structurally, morphologically, compositionally, optically and electrically characterized. Strong effect of the nature (amorphous or crystalline) and type (Si or glass) of the substrate on the physical properties of lead selenide films is detected. Of these properties the crystallite sizes decreased and the microstrain, the stacking faults and defect density increased and the energy band gap is blue shifted when (a, n)-Si substrates replaces glass. In addition, the use of crystalline n−Si substrates instead of a−Si removed the free carrier absorption from a−Si/ p−PbSe improving the quantum efficiency of the devices. Opto-electronically, n−Si/p−PbSe films showed photosensor characteristics that suit both visible light and infrared technology applications. The photosensors displayed high current responsivity, external quantum efficiency percentages and response times reaching respective values of 1.4 A/W, 172% and 60 μs. In addition, the n−Si/p−PbSe photosensors which were used as detectors to receive wireless light signals generated from light pulses of 10 kHz frequencies showed smart features nominating them as promising devices for laser sensing and visible light communication technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Moparthi S, Tiwari PK, Saramekala GK (2022) Sensitivity analysis of silicon nanotube FET (Si NTFET) with TCAD assisted machine learning. Silicon 14:9021–9031. https://doi.org/10.1007/s12633-021-01546-x

    Article  CAS  Google Scholar 

  2. Chen P, Wu Z, Shi Y, Li C, Wang J, Yang J, Dong X, Gou J, Wang J, Jiang Y (2021) High-performance silicon-based PbSe-CQDs infrared photodetector. J Mater Sci Mater Electron 32:9452–9462. https://doi.org/10.1007/s10854-021-05609-y

    Article  CAS  Google Scholar 

  3. Korotcenkov G(2023) Handbook of II-VI semiconductor-based sensors and radiation detectors: volume 1, materials and technology. Springer nature; Apr 20

  4. Sun J, Zhang Y, Fan Y, Tang X, Tan G (2022) Strategies for boosting thermoelectric performance of PbSe: a review. Chem Eng J 431:133699. https://doi.org/10.1016/j.cej.2021.133699

    Article  CAS  Google Scholar 

  5. Ren Y, Wei M, Wang S, Liu X (2022) Van der Waals growth of PbSe thin films on graphene and Bi2Se3. Vacuum 201:111043. https://doi.org/10.1016/j.vacuum.2022.111043

    Article  CAS  Google Scholar 

  6. Gupta MC, Harrison JT, Islam MT (2021) Photoconductive PbSe thin films for infrared imaging. Mater Adv 2(10):3133–3160

    Article  CAS  Google Scholar 

  7. Grigoryeva S, Baklanov A, Alimkhanova A, Dmitriev A, Györök G (2021) Usage of light-emitting diode lighting and visible light communication Technology for Temperature Control. Acta Polytechnica Hungarica 18(4):7–24. https://doi.org/10.12700/APH.18.4.2021.4.1

  8. Alkhamisi MM, Qasrawi AF, Khanfar HK, Algarni SE (2023) Pt/PbSe optoelectronic receivers designed for 6G and terahertz communication technologies. Opt Quant Electron 55:156. https://doi.org/10.1007/s11082-022-04434-9

    Article  Google Scholar 

  9. Fu H, Luan W, Tu ST (2012) A simple route for synthesis of PbSe nanocrystals: shape control by ligand and reaction time. Dalton Trans 39:12254–12258. https://doi.org/10.1039/C2DT30962A

    Article  Google Scholar 

  10. Hemeda OM, Said MZ, Barakat MM (2001) Spectral and transport phenomena in Ni ferrite-substituted Gd2O3. J Magn Magn Mater 224:132–142. https://doi.org/10.1016/S0304-8853(00)00578-3

    Article  CAS  Google Scholar 

  11. Liu K, Cui X, Xing Z, Li J, Zhang X, Dong M, Jin G, Wang H, Xu B (2023) Mechanism of LaFeO3 perovskite and gradient strain nanocrystalline improving carbon atom diffusion and tribological properties of carburizing steel. Tribol Int 177:107961. https://doi.org/10.1016/j.triboint.2022.107961

    Article  CAS  Google Scholar 

  12. Boztug C, Sánchez-Pérez JR, Cavallo F, Lagally MG, Paiella R (2014) Strained-germanium nanostructures for infrared photonics. ACS Nano 8(4):3136–3151. https://doi.org/10.1021/nn404739b

    Article  CAS  PubMed  Google Scholar 

  13. Almotiri RA, Qasrawi AF (2022) Optoelectronic performance of n− Si/p− MgSe heterojunctions as a visible light communication component. Optik 271:170106. https://doi.org/10.1016/j.ijleo.2022.170106

    Article  CAS  Google Scholar 

  14. Khusayfan, Najla M, Hazem K Khanfar, Seham R Alharbi (2021) "Design and characterization of au/CdSe/GeO 2/C MOSFET devices." Mater Res 24. https://doi.org/10.1590/1980-5373-MR-2021-0020

  15. Ren Y, Li Y, Liu X (2021) Fabrication of topological insulator Bi2Se3− PbSe heterojunction photodetector for infrared detection. physica status solidi (RRL)–Rapid Research Letters 15(11):2100406

    Article  CAS  Google Scholar 

  16. Hebling J, Hoffmann MC, Hwang HY, Yeh KL, Nelson KA. (2008) Nonlinear optical effects in germanium in the THz range: THz-pump-THz-probe measurement of carrier dynamics. InUltrafast Phenomena XVI: Proceedings of the 16th International Conference, Palazzo dei Congressi Stresa, Italy, June 9--1 2009 (pp. 660–662). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-95946-5_214

  17. Buryakov A, Khusyainov D, Mishina E, Yachmenev A, Khabibullin R, Ponomarev D (2019) Effect of epitaxial stresses on the time dynamics of Photoexcited charge carriers in InGaAs− based Superlattices. MRS Adv 4:15–20. https://doi.org/10.1557/adv.2019.163

    Article  CAS  Google Scholar 

  18. Qasrawi AF, Yaseen NM (2022) Performance of broken gap MoO 3/ZnS heterojunctions as abrupt electronic switches, MOSFETs, negative capacitance FETs and bandpass filters suitable for 3G/4G technologies. J Electron Mater Jan 9:1–3. https://doi.org/10.1007/s11664-021-09353-1

    Article  CAS  Google Scholar 

  19. Jesenovec J, Varley J, Karcher SE, McCloy JS (2021) Electronic and optical properties of Zn-doped β-Ga2O3 Czochralski single crystals. J Appl Phys 129:225702. https://doi.org/10.1063/5.0050468

    Article  CAS  Google Scholar 

  20. Preble SF, Xu Q, Lipson M (2007) Changing the colour of light in a silicon resonator. Nat Photon 1:293–296. https://doi.org/10.1038/nphoton.2007.72

    Article  CAS  Google Scholar 

  21. Wang X, Li K, Dong Y, Jiang K (2010) Preparation and characterization of monodispersed PbSe nanocubes. Crystal Res Technol J Experiment Indust Crystallograph 45:94–98. https://doi.org/10.1002/crat.200900501

    Article  CAS  Google Scholar 

  22. Klepzig LF, Biesterfeld L, Romain M, Niebur A, Schlosser A, Hübner J, Lauth J (2022) Colloidal 2D PbSe nanoplatelets with efficient emission reaching the telecom O. E-and S-band Nanoscale Adv 4:590–599. https://doi.org/10.1039/D1NA00704A

    Article  CAS  PubMed  Google Scholar 

  23. Li B, Wang J, Wu Q, Tian Q, Li P, Zhang L, Yin LJ, Tian Y, Johnny Wong PK, Qin Z, Zhang L (2022) Nanopore-patterned CuSe drives the realization of the PbSe–CuSe lateral Heterostructure. ACS Appl Mater Interfaces 14:32738–32746. https://doi.org/10.1021/acsami.2c08397

    Article  CAS  PubMed  Google Scholar 

  24. Feng W, Zhou H, Chen F (2015) Impact of thickness on crystal structure and optical properties for thermally evaporated PbSe thin films. Vacuum 114:82–85

    Article  CAS  Google Scholar 

  25. Arivazhagan V, Manonmani Parvathi M, Rajesh S (2012) Impact of thickness on vacuum deposited PbSe thin films. Vacuum 86(8):1092–1096

    Article  CAS  Google Scholar 

  26. Rehman A, Delgado-Notario JA, Sai P, But DB, Prystawko P, Ivonyak Y, Cywinski G, Knap W, Rumyantsev S (2022) Temperature dependence of current response to sub-terahertz radiation of AlGaN/GaN and graphene transistors. Appl Phys Lett 121:213503. https://doi.org/10.1063/5.0129507

    Article  CAS  Google Scholar 

  27. Dawar AL, Taneja OP, Paradkar SK, Kumar P, Mathur PC (1982) Electrical effects of thallium on the hall mobility in p-PbTe thin films. Thin Solid Films 91:357–362. https://doi.org/10.1016/0040-6090(82)90259-0

    Article  CAS  Google Scholar 

  28. Chen X, Zang J, Yang X, Zhang Y, Chen Y, Zhao Y, Dong L, Shan CX (2022) Ultrasensitive monolayer-MoS2 heterojunction photodetectors realized via an asymmetric Fabry-Perot cavity. Sci China Mater 65:1861–1868. https://doi.org/10.1007/s40843-021-1955-0

    Article  CAS  Google Scholar 

  29. Isah M, Rahman KS, Doroody C, Harif MN, Rosly HN, Sopian K, Tiong SK, Amin N (2021) Design optimization of CdTe/Si tandem solar cell using different transparent conducting oxides as interconnecting layers. J Alloys Compd 870:159351. https://doi.org/10.1016/j.jallcom.2021.159351

    Article  CAS  Google Scholar 

  30. Sze SM, Li Y, Ng KK (2021) Physics of semiconductor devices. John Wiley & Sons, Inc., Hoboken, New Jersey

  31. Kang CH, Liu G, Lee C, Alkhazragi O, Wagstaff JM, Li KH, Alhawaj F, Ng TK, Speck JS, Nakamura S, DenBaars SP (2019) Semipolar InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. Appl Phys Express 13:014001. https://doi.org/10.7567/1882-0786/ab58eb

    Article  CAS  Google Scholar 

  32. Alagarasan D, Varadharajaperumal S, Aadhavan R, Shanmugavelu B, Naik R, Kh S, Haunsbhavi K, Shkir M, Massoud EE, Ganesan R (2023) Enhanced photodetection performance of silver-doped tin sulfide photodetectors for visible light photodetection. Sensors Actuators A Phys 349:114065. https://doi.org/10.1016/j.sna.2022.114065

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-22-DR-99). The authors, therefore, acknowledge with thanks the University of Jeddah for its technical and financial support.

Funding

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-22-DR-99). The authors, therefore, acknowledge with thanks the University of Jeddah for its technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

Prof. Najla have shared in the review article collection, wins the fund, analyzed the X-ray data in Fig. 1a and measured the illuminated current-voltage characteristics. Prof. Seham calculated the responsivity and external quantum efficiency and commented them. Prof. Hazem Khanfar partially guided the work, measured the dark I-V data and analyzed or shared analyses of the data in all figures. Qasrawi AF edited the article explained the results and mainly guided the work.

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Consent to Participate

All authors participated in the work.

Consent for Publication

All authors agree to publish this article in the Journal.

Ethical Approval

Not applicable.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusayfan, N.M., Qasrawi, A.F., Khanfar, H.K. et al. Lead Selenide Thin Films Designed for Laser Sensing and Visible Light Communications. Silicon 15, 6971–6979 (2023). https://doi.org/10.1007/s12633-023-02554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02554-9

Keywords

Navigation