Skip to main content
Log in

Infrared Photodetectors and Image Arrays Made with Organic Semiconductors

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Combining the strategies of introducing larger heteroatom, regio-regular backbone and extended branching position of side-chain, we developed polymer semiconductors (PPCPD) with narrow band-gap to construct the photosensing layer of thin-film photodiodes and image arrays. The spectral response of the resulting organic photodiodes spans from the near ultra-violet to short-wavelength infrared region. The performance of these short-wavelength infrared photodiodes in 900–1200 nm range achieved a level competitive with that of indium gallium arsenide-based inorganic crystalline detectors, exhibiting a specific detectivity of 5.55×1012 Jones at 1.15 µm. High photodetectivity and quantum efficiency in photodiode with amorphous/nanocrystalline thin-films of 100–200 nm thickness enabled high pixel-density image arrays without pixel-level-patterning in the sensing layer. 1 × 256 linear diode arrays with 25 µm × 25 µm pixel pitch were achieved, enabling high pixel-density short-wavelength infrared imaging at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manna, E.; Xiao, T.; Shinar, J.; Shinar, R. Organic photodetectors in analytical applications. Electronics 2015, 4, 688–722.

    Article  CAS  Google Scholar 

  2. Zhu, D.; Ji, D.; Li, L.; Hu, W. Recent progress in polymer-based infrared photodetectors. J. Mater. Chem. C 2022, 10, 13312–13323.

    Article  CAS  Google Scholar 

  3. Cao, Y.; Yang, X.; Liu, C.; Huang, F. Application of organic/polymer photodetectors in the medical and healthcare area. Acta Polymerica Sinica (in Chinese) 2022, 53, 307–330.

    CAS  Google Scholar 

  4. Ren, H.; Chen, J.; Li, Y.; Tang, J. Recent progress in organic photodetectors and their applications. Adv. Sci. 2021, 8, 2002418.

    Article  CAS  Google Scholar 

  5. Yang, W.; Qiu, W.; Georgitzikis, E.; Simoen, E.; Serron, J.; Lee, J.; Lieberman, I.; Cheyns, D.; Malinowski, P.; Genoe, J.; Chen, H.; Heremans, P. Mitigating dark current for high-performance near-infrared organic photodiodes via charge blocking and defect passivation. ACS Appl. Mater. Interfaces 2021, 13, 16766–16774.

    Article  CAS  PubMed  Google Scholar 

  6. Pan, Y.; Tao, L.; Gao, J.; He, C.; Liu, Z.; Fang, Y.; Shi, M.; Chen, H. A near-infrared electron acceptor with thieno[3,4-b]thiophene as the core and the related high-performance photodetectors. Acta Polymerica Sinica (in Chinese) 2022, 53, 424–432.

    CAS  Google Scholar 

  7. Rob Verger, “Apple’s new face ID system uses a sensing strategy that dates back decades”, Popular Science, Sept. 13, 2017, https://www.popsci.com/apple-face-ID/.

  8. International Electrotechnical Commission, “IEC 60825-1 – Safety of laser products – Part 1: Equipment classification and requirements”, 3.0 edition (2014)).

  9. Fan, D.; Lee, K.; Forrest, S. R. Flexible thin-film InGaAs photodiode focal plane array. ACS Photonics 2016, 3, 670–676.

    Article  CAS  Google Scholar 

  10. Hashimoto, T.; Satoh, H.; Fujiwara, H.; Arai, M. A study on suppressing crosstalk through a thick SOI substrate and deep trench isolation. IEEE J. Electron Devices Soc. 2013, 1, 155–161.

    Article  Google Scholar 

  11. Lee, S.; Bashir, R. Modeling and characterization of deep trench isolation structures. Microelectron. J. 2001, 32, 295–300.

    Article  CAS  Google Scholar 

  12. Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667.

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Z.; Zhai, Y.; Kim, H.; Azoulay, J. D.; Ng, T. N. Emerging design and characterization guidelines for polymer-based infrared photodetectors. Acc. Chem. Res. 2018, 51, 3144–3153.

    Article  CAS  PubMed  Google Scholar 

  14. Li, Q.; Guo, Y.; Liu, Y. Exploration of near-infrared organic photodetectors. Chem. Mater. 2019, 31, 6359–6379.

    Article  CAS  Google Scholar 

  15. Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 2016, 10, 81–92.

    Article  CAS  Google Scholar 

  16. Hafiz, S.; Scimeca, M.; Sahu, A.; Ko, D. Colloidal quantum dots for thermal infrared sensing and imaging. Nano Convergence 2019, 6, 1–22.

    Article  Google Scholar 

  17. Gelinck, G. H.; Kumar, A.; van der Steen, J. L.; Shafique, U.; Malinowski, P. E.; Myny, K.; Rand, B. P.; Simon, M.; Rütten, W.; Douglas, A. X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate. Org. Electron. 2013, 14, 2602–2609.

    Article  CAS  Google Scholar 

  18. Tordera, D.; Peeters, B.; Akkerman, H. B.; van Breemen, A. J.; Maas, J.; Shanmugam, S.; Kronemeijer, A. J.; Gelinck, G. H. A highresolution thin-film fingerprint sensor using a printed organic photodetector. Adv. Mater. Technol. 2019, 4, 1900651.

    Article  CAS  Google Scholar 

  19. Ng, T. N.; Wong, W. S.; Chabinyc, M. L.; Sambandan, S.; Street, R. A. Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 2008, 92, 213303.

    Article  Google Scholar 

  20. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  21. Yu, G.; Heeger, A. J. Charge separation and photovoltaic conversion with internal donor/acceptor heterojunctions in polymer composites. J. Appl. Phys. 1995, 78, 4510–4515.

    Article  CAS  Google Scholar 

  22. Zhong, Z.; Bu, L.; Zhu, P.; Xiao, T.; Fan, B.; Ying, L.; Lu, G.; Yu, G.; Huang, F.; Cao, Y. Dark current reduction strategy via a layer-by-layer solution process for a high-performance all-polymer photodetector. ACS Appl. Mater. Interfaces 2019, 11, 8350–8356.

    Article  CAS  PubMed  Google Scholar 

  23. Yang, D.; Ma, D. Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Opt. Mater. 2019, 7, 1800522.

    Article  Google Scholar 

  24. Yu, G.; Srdanov, G.; Wang, H.; Cao, Y.; Heeger, A. J. Photovoltaic cells and photodetectors made with semiconductor polymers: recent progress. Org. Photon. Mater. Devices II 2000, 3939, 118–125.

    CAS  Google Scholar 

  25. Gasparini, N.; Gregori, A.; Salvador, M.; Biele, M.; Wadsworth, A.; Tedde, S.; Baran, D.; McCulloch, I.; Brabec, C. Visible and near-infrared imaging with nonfullerene-based photodetectors. Adv. Mater. Technol. 2018, 3, 1800104.

    Article  Google Scholar 

  26. Yu, G.; Wang, J.; McElvain, J.; Heeger, A. J. Large-area, full-color image sensors made with semiconducting polymers. Adv. Mater. 1998, 10, 1431–1434.

    Article  CAS  Google Scholar 

  27. Yu, G.; Shieh, C. L.; Xiao, T.; Lee, K.; Foong, F.; Wang, G.; Musolf, J.; Chen, Z.; Chang, F.; Ottosson, K. High throughput motft with organic etch-stopper and sinx gate insulator. SID Symp. Dig. Technol. Pap. 2015, 46, 296–299.

    Article  CAS  Google Scholar 

  28. Ying, L.; Huang, F.; Bazan, G. C. Regioregular narrow-bandgap-conjugated polymers for plastic electronics. Nat. Commun. 2017, 8, 1–13.

    Article  Google Scholar 

  29. Ying, L.; Hsu, B. B.; Zhan, H.; Welch, G. C.; Zalar, P.; Perez, L. A.; Kramer, E. J.; Nguyen, T. Q.; Heeger, A. J.; Wong, W. Y. Regioregular pyridal [2,1,3] thiadiazole π-conjueated copolymers. J. Am. Chem. Soc. 2011, 133, 18538–18541.

    Article  CAS  PubMed  Google Scholar 

  30. Ming, S.; Zhen, S.; Liu, X.; Lin, K.; Liu, H.; Zhao, Y.; Lu, B.; Xu, J. Chalcogenodiazolo [3,4-c] pyridine based donor-acceptor-donor polymers for green and near-infrared electrochromics. Polym. Chem. 2015, 6, 8248–8258.

    Article  CAS  Google Scholar 

  31. Brebels, J.; Klider, K. C.; Kelchtermans, M.; Verstappen, P.; Van Landeghem, M.; Van Doorslaer, S.; Goovaerts, E.; Garcia, J. R.; Manca, J.; Lutsen, L. Low bandgap polymers based on bay-annulated indigo for organic photovoltaics: enhanced sustainability in material design and solar cell fabrication. Org. Electron. 2017, 50, 264–272.

    Article  CAS  Google Scholar 

  32. Li, M. J.; Fan, B. B.; Zhong, W. K.; Zeng, Z. M. Y.; Xu, J. K.; Ying, L. Rational design of conjugated polymers for d-limonene processed all-polymer solar cells with small energy loss. Chinese J. Polym. Sci. 2020, 38, 791–796.

    Article  CAS  Google Scholar 

  33. Wang, X.; Gao, S. J.; Han, J. F.; Zhang, Y. L.; Zhang, S.; Qiao, W. Q.; Wang, Z. Y. Effect of 1, 8-diiodooctane content on the performance of P3HT: PC61BM bulk heterojunction photodetectors. Chinese J. Polym. Sci. 2021, 39, 831–837.

    Article  CAS  Google Scholar 

  34. Xie, B.; Zhang, K.; Li, J.; Li, L.; Song, Y.; Cui, N.; Bai, Y.; Huang, F. High-sensitivity visible-blind near-infrared narrowband organic photodetectors realized by controlling trap distribution. Acta Polymerica Sinica (in Chinese) 2022, 53, 414–423.

    CAS  Google Scholar 

  35. Gibson, G. L.; Seferos, D. S. P. “Heavy-atom” donor-acceptor conjugated polymers. Macromol. Chem 2014, 215, 811–823.

    Article  CAS  Google Scholar 

  36. Sworakowski, J.; Janus, K. On the reliability of determination of energies of HOMO levels in organic semiconducting polymers from electrochemical measurements. Org. Electron. 2017, 48, 46–52.

    Article  CAS  Google Scholar 

  37. Pho, T. V.; Toma, F. M.; Tremolet de Villers, B. J.; Wang, S.; Treat, N. D.; Eisenmenger, N. D.; Su, G. M.; Coffin, R. C.; Douglas, J. D.; Fréchet, J. M. Decacyclene triimides: paving the road to universal non-fullerene acceptors for organic photovoltaics. Adv. Energy Mater. 2014, 4, 1301007.

    Article  Google Scholar 

  38. Hamamatsu, G9203-256D, line rate of 1KHz, Selection Guide of InGaAs Photodiodes, p. 6,11&13, April 2021; https://www.ha-mamatsu.com/resources/pdf/ssd/infrared_kird0001e.pdf.

  39. Griffin, D. R.; Hubbard, R.; Wald, G. The sensitivity of the human eye to infra-red radiation. J. Opt. Soc. Am. A 1947, 37, 546–554.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U21A6002 and 51933003) and the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Ying, Gang Yu or Fei Huang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, ZM., Peng, F., Ying, L. et al. Infrared Photodetectors and Image Arrays Made with Organic Semiconductors. Chin J Polym Sci 41, 1629–1637 (2023). https://doi.org/10.1007/s10118-023-2973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2973-8

Keywords

Navigation