Skip to main content

Advertisement

Log in

Exogenous Silicon Application Promotes Tolerance of Legumes and Their N2 Fixing Symbiosis to Salt Stress

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Legumes, the second-most-important crop family, are a key source of biological nitrogen in agriculture and potentially contribute to sustainable cropping systems. Nevertheless, most legumes are salt sensitive, especially during biological nitrogen fixation (BNF). Therefore, improving legume growth and symbiosis efficiency under this constraint constitutes a great challenge to meet the increasing food demands and to protect soils from negative impacts of chemical fertilizers. In this perspective, silicon (Si) has been found to mitigate salt stress effect and improve legume development at the overall developmental stages. Whether direct or indirectly, Si counteracts salt stress effects on seed germination, plant growth and nodulation. The improvement of water uptake and nutrient homeostasis, the modification of gas exchange, the regulation of phytohormone and compatible solute biosynthesis and the regulation of the antioxidant metabolism under salinity are the key mechanisms evoked by plants upon Si treatment. Furthermore, during rhizobial symbiosis, Si has been shown to induce nodule formation and act on nodule functionality by increasing bacteroids and symbiosomes number, nitrogenase activity and leghemoglobin content under salinity. Here, we reviewed recent progress related to the role of exogenous Si in improving legume salt tolerance and highlighted the mechanisms through which Si could mediate salt tolerance. The needs of future research for better understanding how Si can promote salt tolerance in legumes are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  2. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379. https://doi.org/10.1016/j.tplants.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KH (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217. https://doi.org/10.1016/J.PLAPHY.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  4. Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C (2019) Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. Int J Mol Sci 20:799. https://doi.org/10.3390/ijms20040799

    Article  CAS  PubMed Central  Google Scholar 

  5. Jha UC, Bohra A, Jha R, Parida SK (2019) Salinity stress response and “omics” approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep 38:255–277. https://doi.org/10.1007/s00299-019-02374-5

    Article  CAS  PubMed  Google Scholar 

  6. Sidari M, Santonoceto C, Anastasi U, Preiti G, Muscolo A (2008) Variations in four genotypes of lentil under NaCl-salinity stress. Am J Agric Biol Sci 3:410–416

    Article  Google Scholar 

  7. Farissi M, Bouizgaren A, Faghire M, Bargaz A, Ghoulam C (2011) Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages. Seed Sci Technol 39:389–401. https://doi.org/10.15258/sst.2011.39.2.11

    Article  Google Scholar 

  8. Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH (2020) Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol Biochem 157:47–59. https://doi.org/10.1016/j.plaphy.2020.09.038

    Article  CAS  PubMed  Google Scholar 

  9. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. https://doi.org/10.1093/aob/mcn125

    Article  CAS  PubMed  Google Scholar 

  10. Farissi M, Mouradi M, Farssi O, Bouizgaren A, Ghoulam C (2018) Variations in leaf gas exchange, chlorophyll fluorescence and membrane potential of Medicago sativa root cortex cells exposed to increased salinity: The role of the antioxidant potential in salt tolerance. Arch Biol Sci 70:413–423. https://doi.org/10.2298/ABS171019001F

    Article  Google Scholar 

  11. Pan T, Liu M, Kreslavski VD, Zharmukhamedov SK, Nie C, Yu M, Kuznetsov VV, Allakhverdiev SI, Shabala S (2020) Non-stomatal limitation of photosynthesis by soil salinity. Crit Rev Environ Sci Technol 51(8):791–825. https://doi.org/10.1080/10643389.2020.1735231

    Article  CAS  Google Scholar 

  12. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  13. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257. https://doi.org/10.1093/jxb/ert430

    Article  CAS  PubMed  Google Scholar 

  14. Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: From physiology to genomics and beyond. Annu Plant Rev 42:207–248. https://doi.org/10.1002/9781444328608.ch9

    Article  CAS  Google Scholar 

  15. Dicenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A (2019) Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 65:1–33. https://doi.org/10.1139/cjm-2018-0377

    Article  CAS  PubMed  Google Scholar 

  16. Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J (2020) Biotechnological perspectives of omics and genetic engineering methods in alfalfa. Front Plant Sci 11:592. https://doi.org/10.3389/fpls.2020.00592

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raza A, Zahra N, Hafeez MB, Ahmad M, Iqbal S, Shaukat K, Ahmad G (2020) Nitrogen fixation of legumes: Biology and physiology. The Plant Family Fabaceae. Springer, Singapore, pp 43–74

    Chapter  Google Scholar 

  18. Tsubo M, Walker S, Ogindo HO (2005) A simulation model of cereal-legume intercropping systems for semi-arid regions: I. Model development. F Crop Res 93:10–22. https://doi.org/10.1016/j.fcr.2004.09.002

    Article  Google Scholar 

  19. Duchene O, Vian JF, Celette F (2017) Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric Ecosyst Environ 240:148–161. https://doi.org/10.1016/j.agee.2017.02.019

    Article  Google Scholar 

  20. Gogoi N, Baruah KK, Meena RS (2018) Grain legumes: Impact on soil health and agroecosystem. Legumes for soil health and sustainable management. Springer, Singapore, pp 511–539

    Chapter  Google Scholar 

  21. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32:329–364. https://doi.org/10.1007/s13593-011-0056-7ï

    Article  CAS  Google Scholar 

  22. Rodriguez C, Carlsson G, Englund JE, Flöhr A, Pelzer E, Jeuffroy MH, Makowski D, Jensen ES (2020) Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis. Eur J Agron 118:126077. https://doi.org/10.1016/j.eja.2020.126077

    Article  CAS  Google Scholar 

  23. Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev 35:911–935. https://doi.org/10.1007/s13593-014-0277-7

    Article  Google Scholar 

  24. Wild A (2003) Soils, land and food: Managing the land during the twenty-first century. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107. https://doi.org/10.1146/annurev-phyto-080516-035312

    Article  CAS  PubMed  Google Scholar 

  26. Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85. https://doi.org/10.1111/nph.15343

    Article  PubMed  Google Scholar 

  27. Majumdar S, Prakash NB (2020) An overview on the potential of silicon in promoting defence against biotic and abiotic stresses in sugarcane. J Soil Sci Plant Nutr 20:1969–1998. https://doi.org/10.1007/S42729-020-00269-Z

    Article  CAS  Google Scholar 

  28. Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68. https://doi.org/10.1016/J.TPLANTS.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  29. Zhang W, Xie Z, Lang D, Cui J, Zhang X (2017) Beneficial effects of silicon on abiotic stress tolerance in legumes. J Plant Nutr 40:2224–2236. https://doi.org/10.1080/01904167.2017.1346127

    Article  CAS  Google Scholar 

  30. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17. https://doi.org/10.1073/PNAS.91.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14(2):371. https://doi.org/10.1104/pp.14.2.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Epstein E, Bloom A (2005) Mineral nutrition of plants: Principles and perspectives. 2nd edition Sinauer Associates, Inc. Sunderland, Massachusetts, pp. 201-240

  33. Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ Sci Pollut Res 22:15416–15431. https://doi.org/10.1007/s11356-015-5305-x

    Article  CAS  Google Scholar 

  34. Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ Pollut 147:422–428. https://doi.org/10.1016/J.ENVPOL.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  35. Elsokkary IH (2018) Silicon as a beneficial element and as an essential plant nutrient: An outlook. Alexandria Sci Exch J 39:534–550. https://doi.org/10.21608/ASEJAIQJSAE.2018.16920

    Article  Google Scholar 

  36. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472. https://doi.org/10.1007/s13593-013-0194-1

    Article  CAS  Google Scholar 

  37. Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. Stud Plant Sci 8:17–39. https://doi.org/10.1016/S0928-3420(01)80006-9

    Article  CAS  Google Scholar 

  38. Zhang XH, Zhou D, Cui JJ, Ma HL, Lang DY, Wu XL, Wang ZS, Qiu HY, Li M (2015) Effect of silicon on seed germination and the physiological characteristics of Glycyrrhiza uralensis under different levels of salinity. J Hortic Sci Biotechnol 90:439–443. https://doi.org/10.1080/14620316.2015.11513207

    Article  CAS  Google Scholar 

  39. Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

    Article  PubMed  PubMed Central  Google Scholar 

  40. Esmaeili S, Salehi H, Eshghi S (2015) Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. J Plant Nutr 38:1885–1901. https://doi.org/10.1080/01904167.2015.1069332

    Article  CAS  Google Scholar 

  41. Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387. https://doi.org/10.1007/s10725-015-0099-x

    Article  CAS  Google Scholar 

  42. Wu G, Liu H, Feng R, Wang CM, Du YY (2017) Silicon ameliorates the adverse effects of salt stress on sainfoin (Onobrychis viciaefolia) seedlings. Plant Soil Environ 63:545–551. https://doi.org/10.17221/665/2017-PSE

    Article  CAS  Google Scholar 

  43. Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2018) Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul 1–13. https://doi.org/10.1007/s00344-018-9810-2

  44. Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52:592–596. https://doi.org/10.1007/s10535-008-0118-0

    Article  CAS  Google Scholar 

  45. Wang X, Wei Z, Liu D, Zhao G (2011) Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African J Biotechnol 10:545–549. https://doi.org/10.5897/AJB10.1353

    Article  CAS  Google Scholar 

  46. Putra R, Powell JR, Hartley SE, Johnson SN (2020) Is it time to include legumes in plant silicon research? Funct Ecol 1–16. https://doi.org/10.1111/1365-2435.13565

  47. Etesami H, Adl SM (2020) Can interaction between silicon and non–rhizobial bacteria benefit in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere 15:100229. https://doi.org/10.1016/j.rhisph.2020.100229

    Article  Google Scholar 

  48. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—A review. J Plant Nutr Soil Sci 169:310–329. https://doi.org/10.1002/jpln.200521981

    Article  CAS  Google Scholar 

  49. Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: A review. Agron Sustain Dev 32:201–213. https://doi.org/10.1007/s13593-011-0039-8

    Article  Google Scholar 

  50. Meena VD, Dotaniya ML, Coumar V, Rajendiran S, Kundu S, Rao AS (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sect B - Biol Sci 84:505–518. https://doi.org/10.1007/s40011-013-0270-y

    Article  CAS  Google Scholar 

  51. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057. https://doi.org/10.1007/s00018-008-7580-x

    Article  CAS  PubMed  Google Scholar 

  52. Handreckt KA, Jonest LHP (1967) Uptake of monosilicic acid by Trifolium incarnatum (L.). Aust J BioI Sci 20:483–486. https://doi.org/10.1071/BI9670483

    Article  Google Scholar 

  53. Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agric Food Chem 2:99–102

    CAS  Google Scholar 

  54. Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374. https://doi.org/10.1007/s11104-006-9085-4

    Article  CAS  Google Scholar 

  55. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207. https://doi.org/10.1111/j.1469-185x.1983.tb00385.x

    Article  CAS  Google Scholar 

  56. Shwethakumari U, Prakash NB (2018) Effect of foliar application of silicic acid on soybean yield and seed quality under field conditions. J Indian Soc Soil Sci 66:406–414. https://doi.org/10.5958/0974-0228.2018.00051.8

    Article  Google Scholar 

  57. Shwethakumari U, Pallavi T, Prakash NB (2021) Influence of foliar silicic acid application on soybean (Glycine max L.) varieties grown across two distinct rainfall years. Plants 10:1162. https://doi.org/10.3390/PLANTS10061162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691. https://doi.org/10.1038/nature04590

    Article  CAS  PubMed  Google Scholar 

  59. Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12. https://doi.org/10.1093/pcp/pcn110

    Article  CAS  PubMed  Google Scholar 

  60. Ma Q, Kang J, Long R, Zhang T, Xiong J, Zhang K, Wang T, Yang Q, Sun Y (2017) Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Mol Biol Rep 44:261–272. https://doi.org/10.1007/s11033-017-4104-5

    Article  CAS  PubMed  Google Scholar 

  61. Vatansever R, Ozyigit II, Filiz E, Gozukara N (2017) Genome-wide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants; insights into Si-accumulation status/capacity of plants. Biometals 30:185–200. https://doi.org/10.1007/s10534-017-9992-2

    Article  CAS  PubMed  Google Scholar 

  62. Nawaz MA, Azeem F, Zakharenko AM, Lin X, Atif RM, Baloch FS, Chan TF, Chung G, Ham J, Sun S, Golokhvast KS (2020) In-silico exploration of channel type and efflux silicon transporters and silicification proteins in 80 sequenced viridiplantae genomes. Plants 9(11):1612. https://doi.org/10.3390/plants9111612

    Article  CAS  PubMed Central  Google Scholar 

  63. Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315. https://doi.org/10.1007/S11103-013-0087-3

    Article  CAS  PubMed  Google Scholar 

  64. Farissi M, Aziz F, Bouizgaren A, Ghoulam C (2014) Legume-rhizobia symbiosis under saline conditions: Agro-physiological and biochemical aspects of tolerance. Int J Innov Sci Res 11:96–104

    Google Scholar 

  65. Alsaeedi AH, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Almohsen M (2017) Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Env Sci Pollut Res 24:21917–21928. https://doi.org/10.1007/s11356-017-9847-y

    Article  CAS  Google Scholar 

  66. Azeem M, Iqbal N, Kausar S, Javed MT, Akram MS, Sajid MA (2015) Efficacy of silicon priming and fertigation to modulate seedling’s vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment. Environ Sci Pollut Res 22:14367–14371. https://doi.org/10.1007/s11356-015-4983-8

    Article  CAS  Google Scholar 

  67. Alves R, de Nicolau C, Checchio MCM, Sousa MV, Oliveira GDS, Prado FDAD, Gratão RM (2020) Salt stress alleviation by seed priming with silicon in lettuce seedlings: An approach based on enhancing antioxidant responses. Bragantia 79:19–29. https://doi.org/10.1590/1678-4499.20190360

    Article  CAS  Google Scholar 

  68. Biju S, Fuentes S, Gupta D (2017) Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol Biochem 119:250–264. https://doi.org/10.1016/j.plaphy.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  69. Izydorczyk C, Nguyen T-N, Jo S, Son S, Tuan PA, Ayele BT (2018) Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signalling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). Plant Cell Environ 41:1022–1037. https://doi.org/10.1111/pce.12949

    Article  CAS  PubMed  Google Scholar 

  70. Vishal B, Kumar PP (2018) Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front Plant Sci 9:838. https://doi.org/10.3389/fpls.2018.00838

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gou T, Chen X, Han R, Liu J, Zhu Y, Gong H (2020) Silicon can improve seed germination and ameliorate oxidative damage of bud seedlings in cucumber under salt stress. Acta Physiol Plant 42:12. https://doi.org/10.1007/s11738-019-3007-6

    Article  CAS  Google Scholar 

  72. Zhu Y-X, Gong H-J, Yin J-L (2019) Role of silicon in mediating salt tolerance in plants: A review. Plants 8:147. https://doi.org/10.3390/plants8060147

    Article  CAS  PubMed Central  Google Scholar 

  73. Meng Y, Yin Q, Yan Z, Wang Y, Niu J, Zhang J, Fan K (2020) Exogenous silicon enhanced salt resistance by maintaining K+/Na+ homeostasis and antioxidant performance in alfalfa leaves. Front Plant Sci 11:1183. https://doi.org/10.3389/fpls.2020.01183

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340. https://doi.org/10.1007/s10457-010-9299-6

    Article  Google Scholar 

  75. Murillo-Amador B, Yamada S, Yamaguchi T, Rueda-Puente E, Ávila‐Serrano N, García‐Hernández JL, López-Aguilar R, Troyo-Diéguez E, Nieto‐Garibay A (2007) Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J Agron Crop Sci 193:413–421. https://doi.org/10.1111/j.1439-037X.2007.00273.x

    Article  CAS  Google Scholar 

  76. Zamani GR, Shaabani J, Izanloo A (2017) Silicon effects on the growth and yield of chickpea under salinity stress. Int J Agric Biol 19:1475–1482. https://doi.org/10.17957/IJAB/15.0446

    Article  CAS  Google Scholar 

  77. Hellal F, Abdelhameid M, Abo-Basha D, Zewainy R (2012) Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on Faba bean (Vica faba L.). J Appl Sci Res 8:4428–4433. https://doi.org/10.1109/SMElec.2012.6417083

    Article  CAS  Google Scholar 

  78. Kardoni F, Mosavi SJ, Parande S, Torbaghan M (2013) Effect of salinity stress and silicon application on yield and component yield of faba bean (Vicia faba). Int J Agric Crop Sci 6:814–818

    Google Scholar 

  79. Parande S, Zamani G, Zahan MH, Ghaderi M (2013) Effects of silicon application on the yield and component of yield in the common bean (Phaseolus vulgaris) under salinity stress. Int J Agron Plant Prod 4:1574–1579

    CAS  Google Scholar 

  80. Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285. https://doi.org/10.1111/j.1747-0765.2007.00135.x

    Article  CAS  Google Scholar 

  81. Owino-Gerroh C, Gascho GJ (2005) Effect of silicon on low pH soil phosphorus sorption and on uptake and growth of maize. Commun Soil Sci Plant Anal 35:2369–2378. https://doi.org/10.1081/LCSS-200030686

    Article  Google Scholar 

  82. Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419:447–455. https://doi.org/10.1007/s11104-017-3364-0

    Article  CAS  Google Scholar 

  83. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855. https://doi.org/10.1016/j.jplph.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  84. Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16. https://doi.org/10.1016/j.envexpbot.2007.06.006

    Article  CAS  Google Scholar 

  85. Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51. https://doi.org/10.1016/j.envexpbot.2014.10.006

    Article  CAS  Google Scholar 

  86. Abdalla M (2011) Impact of diatomite nutrition on two Trifolium alexandrinum cultivars differing in salinity tolerance. Int J Plant Physiol Biochem 3:233–246

    CAS  Google Scholar 

  87. Zhang X, Zhang W, Lang D, Cui J, Li Y (2018) Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environ Sci Pollut Res 25:25916–25932. https://doi.org/10.1007/s11356-018-2595-9

    Article  CAS  Google Scholar 

  88. Rios JJ, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M (2017) Silicon-mediated improvement in plant salinity tolerance: The role of aquaporins. Front Plant Sci 8:948. https://doi.org/10.3389/fpls.2017.00948

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bargaz A, Zaman-Allah M, Farissi M, Lazali M, Drevon JJ, Maougal RT, Georg C (2015) Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. Int J Mol Sci 16:18976–19008. https://doi.org/10.3390/ijms160818976

    Article  CAS  PubMed Central  Google Scholar 

  90. Zhang W, Xie Z, Wang L, Li M, Lang D, Zhang X (2017) Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment. J Plant Res 130:611–624. https://doi.org/10.1007/s10265-017-0927-3

    Article  CAS  PubMed  Google Scholar 

  91. Zhang W, Yu X, Li M, Lang D, Zhang X, Xie Z (2018) Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot 107:1–11. https://doi.org/10.1016/J.CROPRO.2018.01.005

    Article  Google Scholar 

  92. Garg N, Singh S (2018) Mycorrhizal inoculations and silicon fortifications improve rhizobial symbiosis, antioxidant defense, trehalose turnover in pigeon pea genotypes under cadmium and zinc stress. Plant Growth Regul 86:105–119. https://doi.org/10.1007/s10725-018-0414-4

    Article  CAS  Google Scholar 

  93. El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127. https://doi.org/10.3389/fpls.2020.01127

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mahmood S, Daur I, Hussain MB, Nazir Q, Al-Solaimani SG, Ahmad S, Bakhashwain AA, Elsafor AK (2017) Silicon application and rhizobacterial inoculation regulate mung bean response to saline water irrigation. CLEAN - Soil Air Water 45:1–10. https://doi.org/10.1002/clen.201600436

    Article  CAS  Google Scholar 

  95. Novák O, Napier R, Ljung K (2017) Zooming in on plant hormone analysis: Tissue- and cell-specific approaches. Annu Rev Plant Biol 68:323–348. https://doi.org/10.1146/annurev-arplant-042916-040812

    Article  CAS  PubMed  Google Scholar 

  96. Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G (2020) How plant hormones mediate salt stress responses. Trends Plant Sci 25:1117–1130. https://doi.org/10.1016/j.tplants.2020.06.008

    Article  CAS  PubMed  Google Scholar 

  97. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: A review. Ecotoxicol Environ Saf 60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  98. Karmoker JL, Van Steveninck RFM (1979) The effect of abscisic acid on the uptake and distribution of ions in intact seedlings of Phaseolus vulgaris cv. redland pioneer. Physiol Plant 45:453–459. https://doi.org/10.1111/j.1399-3054.1979.tb02613.x

    Article  CAS  Google Scholar 

  99. Chakrabarti N, Mukherji S (2003) Effect of phytohormone pretreatment on nitrogen metabolism in Vigna radiata under salt stress. Biol Plant 46:63–66. https://doi.org/10.1023/A:1022358016487

    Article  CAS  Google Scholar 

  100. Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients – A field trial. Aust J Crop Sci 7:249–254

    CAS  Google Scholar 

  101. Al Murad M, Khan AL, Muneer S (2020) Silicon in horticultural crops: Cross-talk, signaling, and tolerance mechanism under salinity stress. Plants 9:460. https://doi.org/10.3390/plants9040460

    Article  CAS  PubMed Central  Google Scholar 

  102. Zuccarini P (2008) Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol Plant 52:157–160. https://doi.org/10.1007/s10535-008-0034-3

    Article  CAS  Google Scholar 

  103. Zhang WJ, Zhang XJ, Lang DY, Li M, Liu H, Zhang XH (2020) Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photosynthesis and water status. Biol Plant 64:302–313. https://doi.org/10.32615/bp.2019.136

    Article  CAS  Google Scholar 

  104. Chung YS, Kim K-S, Hamayun M, Kim Y (2020) Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Front Plant Sci 10:1725. https://doi.org/10.3389/fpls.2019.01725

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rady MM, Elrys AS, Abo El-Maati MF, Desoky E-SM (2019) Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Plant Physiol Biochem 139:558–568. https://doi.org/10.1016/J.PLAPHY.2019.04.025

    Article  CAS  PubMed  Google Scholar 

  106. López M, Herrera-Cervera JA, Lluch C, Tejera NA (2006) Trehalose metabolism in root nodules of the model legume Lotus japonicus in response to salt stress. Physiol Plant 128:701–709. https://doi.org/10.1111/J.1399-3054.2006.00802.X

    Article  Google Scholar 

  107. Faghire M, Bargaz A, Farissi M, Palma F, Mandri B, Lluch C, Tejera García NA, Herrera-Cervera JA, Oufdou K, Ghoulam C (2011) Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis 55:69–75. https://doi.org/10.1007/s13199-011-0144-0

    Article  CAS  Google Scholar 

  108. Kurdali F, Al-Chammaa M, Al-Ain F (2019) Growth and N2 fixation in saline and/or water stressed Sesbania aculeata plants in response to silicon application. Silicon 11:781–788. https://doi.org/10.1007/s12633-018-9884-2

    Article  CAS  Google Scholar 

  109. Putra R, Vandegeer RK, Karan S, Powell JR, Hartley SE, Johnson SN (2021) Silicon enrichment alters functional traits in legumes depending on plant genotype and symbiosis with nitrogen-fixing bacteria. Funct Ecol. https://doi.org/10.1111/1365-2435.13912

    Article  Google Scholar 

  110. Steiner F, Zuffo AM, Bush A, Santos DMDS (2018) Silicate fertilization potentiates the nodule formation and symbiotic nitrogen fixation in soybean. Pesqui Agropecu Trop 48:212–221. https://doi.org/10.1590/1983-40632018v4851472

    Article  Google Scholar 

  111. Nelwamondo A, Dakora FD (1999) Silicon promotes nodule formation and nodule function in symbiotic cowpea (Vigna unguiculata). New Phytol 142:463–467. https://doi.org/10.1046/j.1469-8137.1999.00409.x

    Article  CAS  Google Scholar 

  112. Nelwamondo A, Jaffer MA, Dakora FD (2001) Subcellular organization of N2-fixing nodules of cowpea (Vigna unguiculata) supplied with silicon. Protoplasma 216:94–100. https://doi.org/10.1007/BF02680136

    Article  CAS  PubMed  Google Scholar 

  113. Mali M, Aery NC (2008) Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J Plant Nutr 31:1867–1876. https://doi.org/10.1080/01904160802402666

    Article  CAS  Google Scholar 

  114. Zhang G, Cui Y, Ding X, Dai Q (2013) Stimulation of phenolic metabolism by silicon contributes to rice resistance to sheath blight. J Plant Nutr Soil Sci 176:118–124. https://doi.org/10.1002/jpln.201200008

    Article  CAS  Google Scholar 

  115. Shamshiripour M, Motesharezadeh B, Rahmani HA, Alikhani HA, Etesami H (2021) Optimal concentrations of silicon enhance the growth of soybean (Glycine max L.) cultivars by improving nodulation, root system architecture, and soil biological properties. Silicon 1–13. https://doi.org/10.1007/S12633-021-01273-3

  116. Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:1–24. https://doi.org/10.1146/annurev-arplant-050718-100005

    Article  CAS  Google Scholar 

  117. Shahzad M, Zörb C, Geilfus CM, Mühling KH (2012) Apoplastic Na+ in Vicia faba leaves rises after short-term salt stress and is remedied by silicon. J Agron Crop Sci 199:161–170. https://doi.org/10.1111/jac.12003

    Article  CAS  Google Scholar 

  118. Bosnic P, Bosnic D, Jasnic J, Nikolic M (2018) Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ Exp Bot 155:681–687. https://doi.org/10.1016/j.envexpbot.2018.08.018

    Article  CAS  Google Scholar 

  119. Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1–7. https://doi.org/10.3389/fpls.2016.01072

    Article  Google Scholar 

  120. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328. https://doi.org/10.1016/j.numecd.2005.05.003

    Article  PubMed  Google Scholar 

  121. Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539. https://doi.org/10.1111/nph.14920

    Article  CAS  PubMed  Google Scholar 

  122. Al-Huqail AA, Alqarawi AA, Hashem A, Malik JA, Abd-Allah EF (2019) Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi J Biol Sci 26:1856–1864. https://doi.org/10.1016/j.sjbs.2017.11.049

    Article  CAS  PubMed  Google Scholar 

  123. Li YT, Zhang WJ, Cui JJ, Lang DY, Li M, Zhao QP, Zhang XH (2016) Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress. Acta Physiol Plant 38:1–9. https://doi.org/10.1007/s11738-016-2108-8

    Article  CAS  Google Scholar 

  124. Wang H-Y, Wen S-L, Chen P, Zhang L, Cen K, Sun GX (2016) Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Environ Sci Pollut Res 23:3781–3788. https://doi.org/10.1007/s11356-015-5638-5

    Article  CAS  Google Scholar 

  125. Taha R, Seleiman M, Shami A, Alhammad BA, Mahdi AH (2021) Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in field salt-stressed soil. Plants 10:1040. https://doi.org/10.3390/plants10061040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ali A, Basra SMA, Hussain S, Iqbal J (2012) Increased growth and changes in wheat mineral composition through calcium silicate fertilization under normal and saline field conditions. Chil J Agric Res 72:98. https://doi.org/10.4067/S0718-58392012000100016

    Article  Google Scholar 

  127. Ullah H, Luc PD, Gautam A, Datta A (2018) Growth, yield and silicon uptake of rice (Oryza sativa) as influenced by dose and timing of silicon application under water-deficit stress. Arch Agron Soil Sci 64:318–330. https://doi.org/10.1080/03650340.2017.1350782

    Article  CAS  Google Scholar 

  128. Ahmad M, El-Saeid M, Akram MA, Ahmad HR, Haroon H, Hussain A (2016) Silicon fertilization a tool to boost up drought tolerance in wheat (Triticum aestivum L.) crop for better yield. J Plant Nutr 39:1283–1291. https://doi.org/10.1080/01904167.2015.1105262

    Article  CAS  Google Scholar 

  129. Zhang M, Liang Y, Chu G (2017) Applying silicate fertilizer increases both yield and quality of table grape (Vitis vinifera L.) grown on calcareous grey desert soil. Sci Hortic (Amsterdam) 225:757–763. https://doi.org/10.1016/j.scienta.2017.08.019

    Article  CAS  Google Scholar 

  130. Prentice P (2017) Efficacy of silica in increasing fields in Marocco. In: Proceedings of the 7th International Conference on Silicon in Agriculture, Bengaluru. pp 24–28

  131. Lemes EM, Mackowiak CL, Blount A, Marois JJ, Wright DL, Coelho L, Datnoff LE (2011) Effects of silicon applications on soybean rust development under greenhouse and field conditions. Plant Dis 95:317–324. https://doi.org/10.1094/PDIS-07-10-0500

    Article  CAS  PubMed  Google Scholar 

  132. Artyszak A (2018) Effect of silicon fertilization on crop yield quantity and quality—A literature review in europe. Plants 7(3):54. https://doi.org/10.3390/plants7030054

    Article  CAS  PubMed Central  Google Scholar 

  133. Ashraf M, Ahmad A, McNeilly T (2001) Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica 39:389–394. https://doi.org/10.1023/A:1015182310754

    Article  CAS  Google Scholar 

  134. Thouin J, Guo MY, Zribi I, Pauly N, Mouradi M, Ghoulam C, Sentenac H, Véry AA (2019) The Medicago truncatula HKT family: Ion transport properties and regulation of expression upon abiotic stresses and symbiosis. bioRxiv 720474. https://doi.org/10.1101/720474

  135. Kaundal A, Sandhu D, Duenas M, Ferreira JFS (2019) Expression of the high-affinity K+ transporter 1 (PpHKT1) gene from almond rootstock “Nemaguard” improved salt tolerance of transgenic Arabidopsis. PLoS One 14:e0214473. https://doi.org/10.1371/journal.pone.0214473

  136. Qin S, Liu Y, Han Y, Xu G, Wan S, Cui F, Li G (2019) Aquaporins and their function in root water transport under salt stress conditions in Eutrema salsugineum Plant Sci 287:110199. https://doi.org/10.1016/j.plantsci.2019.110199

    Article  CAS  PubMed  Google Scholar 

  137. Zhu YX, Xu XB, Hu YH, Han WH, Yin JL, Li HL, Gong HJ (2015) Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep 34:1629–1646. https://doi.org/10.1007/s00299-015-1814-9

    Article  CAS  PubMed  Google Scholar 

  138. Ben Rejeb K, Abdelly C, Savouré A (2012) La proline, un acide aminé multifonctionnel impliqué dans l’adaptation des plantes aux contraintes environnementales. Biol Aujourd’hui 206:291–299. https://doi.org/10.1051/jbio/2012030

    Article  CAS  Google Scholar 

  139. Ben Rejeb K, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284. https://doi.org/10.1016/J.PLAPHY.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  140. Szabados L, Savouré A (2010) Proline: A multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/J.TPLANTS.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  141. López-Gómez M, Hidalgo-Castellanos J, Muñoz-Sánchez JR, Marín-Peña AJ, Lluch C, Herrera-Cervera JA (2017) Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage. Plant Physiol Biochem 116:9–17. https://doi.org/10.1016/j.plaphy.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  142. Menéndez AB, Calzadilla PI, Sansberro PA, Espasandin FD, Gazquez A, Bordenave CD, Maiale SJ, Rodriguez AA, Maguire VG, Campestre MP, Garriz A, Rossi FR, Romero FM, Solmi L, Salloum MS, Monteoliva MI (2019) Polyamines and legumes: Joint stories of stress, nitrogen fixation and environment. Front Plant Sci 10:1415. https://doi.org/10.3389/fpls.2019.01415

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yin J, Jia J, Lian Z, Hu Y, Guo J, Huo H, Zhu Y, Gong H (2019) Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol Environ Saf 169:8–17. https://doi.org/10.1016/j.ecoenv.2018.10.105

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Hubert Curien Maghreb Partnership - PHC Maghreb, No.19MAG41- governed by the agreement signed between the French Ministry of Europe and Foreign Affairs and the Algerian, Moroccan and Tunisian Ministries of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.E.M. Writing-review and editing, A.E.M., N.L. and A.O. Comment on the content of the review and text revision, M.F., A.S. and M.M. Supervision, M.F. and A.S. Funding acquisition, M.F. and A.S. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Mohamed Farissi.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Silicon (Si) is a beneficial element for enhancing legume plant growth and productivity under salt stress.

• Application of Si improves biological nitrogen fixation by enhancing nitrogenase activity and nodule functionality.

• Si alleviates salt-mediated osmotic stress by up-regulating water uptake and compatible solutes accumulation.

• Si reduces oxidative stress under salinity by activating enzymatic and non-enzymatic antioxidant defense system.

• Si alleviates salt toxicity by regulating nutrient homeostasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Moukhtari, A., Lamsaadi, N., Oubenali, A. et al. Exogenous Silicon Application Promotes Tolerance of Legumes and Their N2 Fixing Symbiosis to Salt Stress. Silicon 14, 6517–6534 (2022). https://doi.org/10.1007/s12633-021-01466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01466-w

Keywords

Navigation