Skip to main content

Advertisement

Log in

An Overview on the Potential of Silicon in Promoting Defence Against Biotic and Abiotic Stresses in Sugarcane

  • Review
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Although silicon (Si) is ubiquitous in the earth’s crust, its essentiality for growth of higher plants is still under discussion. By recognising the overwhelming potential of Si in alleviating a wide range of biotic and abiotic stresses, the Association of American Plant Food Control Officials and the International Plant Nutrition Institute, Georgia, USA, have designated Si as a plant ‘beneficial substance’ in 2014 and 2015, respectively. Sugarcane is a Si-accumulating crop which strongly responds to Si fertilisation especially in Si-deficient soil. Due to intensive weathering prevailing in humid and sub-humid regions, most of the soil-available Si, taken up by plants in the form of monosilicic acid (H4SiO4), is lost through leaching. If the concentration of monosilicic acid is being maintained at a fixed level by soil reserves, the highly weathered soils of humid and sub-humid regions tend to become depleted in Si if continuously cultivated with sugarcane. Hence, leaching of Si from the soil coupled with plant uptake is an important factor in determining Si concentrations in soil. Consequently, it can be said that the intensive cultivation of sugarcane depletes the existing low available Si content in soil, resulting in necessity for Si fertilisation. Moreover, the uptake of Si by sugarcane (500–700 kg Si ha−1) sometimes surpasses those of the macronutrients (especially N, P and K). At the same time, due to change in global climate and monoculture system followed in sugarcane, it is affected by a wide range of biotic and abiotic stresses in field condition which calls for external Si supplementation to achieve sustainable growth and yield of sugarcane. The beneficial effects of Si in sugarcane include improvement of photosynthesis and lodging, enhancement of growth and development, regulation of reactive oxygen species, protection from soil salinity, reduction in metal toxicity, alleviation of freeze damage, mitigation of water stress and suppression of diseases and pests. In this review, we made an effort to compile the existing literature describing the potential of Si in promoting defence against various biotic and abiotic stresses in sugarcane and suggested possible future research perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AAPFCO (2014) In official publication: AAPFCO, Association of American Plant Food Control Officials, Publ. No. 67. In: J.V. Slater (ed.) West Lafayette, p. 95

  • Ahmed M, Qadeer U, Ahmed ZI, Hassan F (2016) Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch Agron Soil Sci 62:299–335

    CAS  Google Scholar 

  • Al-Aghabary K, Zhu Z, Shi Q (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and anti-oxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    CAS  Google Scholar 

  • Alcarde JC (1992) Corretivos da acidez dos solos: características e interpretac¸ ões técnicas. (in Portuguese) [Soil acidity correctors: characteristics and technical interpretation]. São Paulo, ANDA, Boletim Técnico, 6

  • Alexander AG (1968) Effects of foliar combinations of gibberellic acid and silicon on sucrose production by sugarcane. J Agric Univ Puerto Rico 52:218–226

    CAS  Google Scholar 

  • Alexander AG (1969) Effects of combined silicon and gibberellic acid on enzyme behaviour and sucrose content of immature sugarcane. Proc Int Soc Sugar Cane Technol 13:522–531

    CAS  Google Scholar 

  • Alexander AG, Montalvo-Zapata R (1970) The use of silicon to preserve sucrose in sugarcane desiccated with Paraquat and Diquat. J Agri Univ Puerto Rico 54:247–260

    CAS  Google Scholar 

  • Alexander AG, Acin-Diaz N, Montalvo-Zapata R (1971) Inversion control in sugarcane juice with sodium metasilicate. Proc Int Soc Sugar Cane Technol 14:794–804

    Google Scholar 

  • Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    CAS  Google Scholar 

  • Alvarez J, Datnoff LE (2001) The economics of silicon for integrated management and sustainable production of rice and sugarcane. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 221–239

    Google Scholar 

  • Anderson DL (1991) Soil and leaf nutrient interactions following application of calcium silicate slag to sugarcane. Fert Res 30(1):9–18

    CAS  Google Scholar 

  • Anderson DL, Sosa O Jr (2001) Effect of silicon on expression of resistance to sugarcane borer (Diatraea saccharalis). Proc J Am Soc Sug Cane Technol 21:43–50

    Google Scholar 

  • Anderson DL, Snyder GH, Martin FG (1991) Multiyear response of sugarcane to calcium silicate slag on Everglades Histosols. Agron J 83:870–874

    CAS  Google Scholar 

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103

    Google Scholar 

  • Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artschwager E (1930) A comparative study of the stem epidermis of certain sugarcane varieties. J Agric Res 41:853–865

    Google Scholar 

  • Ashraf M, Rahmatullah Ahmad R, Afzal M, Tahir MA, Kanwal S, Maqsood MA (2009) Potassium and silicon improve yield and juice quality in sugarcane (Saccharum officinarum L.) under salt stress. J Agron Crop Sci 195:284–291

    CAS  Google Scholar 

  • Ashraf M, Rahmatullah AM, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010a) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391

    CAS  Google Scholar 

  • Ashraf M, Rahmatullah AR, Bhatti AS, Afzal M, Sarwar A, Maqsood MA, Kanwal S (2010b) Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere 20(2):153–162

    CAS  Google Scholar 

  • Askarianzadeh A, Moharramipour S, Kamali K, Fathipour Y (2008) Evaluation of damage caused by stalk borers, Sesamia spp. (Lepidoptera: Noctuidae), on sugarcane quality in Iran. Entomol Res 38:263–267

    Google Scholar 

  • Atkinson PR (1980) On the biology, distribution and natural host-plants of Eldana saccharina Walker (Lepidoptera: Pyralidae). J Entomol Soc Southern Afr 43:171–194

    Google Scholar 

  • Ayres AS (1966) Calcium silicate slag as a growth stimulant for sugarcane on low-silicon soils. Soil Sci 101:216–227

    CAS  Google Scholar 

  • Babu T, Tubana B, Datnoff L, Yzenas J, Maiti K (2016) Release and sorption pattern of monosilicic acid from silicon fertilizers in different soils of Louisiana: a laboratory incubation study. Commun Soil Sci Plant Anal 47:1559–1577. https://doi.org/10.1080/00103624.2016.1194995

    Article  CAS  Google Scholar 

  • Barão L, Clymans W, Vandevenne F, Meire P, Conley DJ, Struyf E (2014) Pedogenic and biogenic alkaline-extracted silicon distributions along a temperate land-use gradient. Eur J Soil Sci 65(5):693–705

    Google Scholar 

  • Barnes BN, Giliomee JH (1992) Fruit-feeding behaviour of banded fruit weevil, Phlyctinus callosus (Schonherr) (Col., Curculionidae), in apple orchards. J Appl Entomol 113:407–415

    Google Scholar 

  • Bartoli F (1983) The biogenic cycle of silica in two temperate forest ecosystems. Ecol Bull 35:469–476

    CAS  Google Scholar 

  • Basagli MA, Moraes JC, Carvalho GA, Ecole CC, Goncalves-Gervasio RDCR (2003) Effects of sodium silicate application on the resistance of wheat plants to the green-aphid Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotrop Entomol 32:659–663

    CAS  Google Scholar 

  • Basnayake J, Jackson PAN, Inman-Bamber G, Lakshmanan P (2012) Sugarcane for water-limited environments: genetic variation in cane yield and sugar content in response to water stress. J Exp Bot 63:6023–6033. https://doi.org/10.1093/jxb/ers251

    Article  CAS  PubMed  Google Scholar 

  • Bazilevich NI (1993) The biological productivity of north Eurasian ecosystems. RAS Institute of Geography, Moscow, Nayka, p 293

    Google Scholar 

  • Beard JJ, David EW, Peter GA (2003) Spider mites of sugarcane in Australia: a review of grass-feeding Oligonychus Berlese (Acari: Prostigmata: Tetranychidae). Aus J Entomol 42:51–78

    Google Scholar 

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f sp tritici). Phytopath 934:402–412

    Google Scholar 

  • Berthelsen S, Noble A, Garside A (2001a) Silicon research down under: past, present, and future. In: Datnoff LE, Snyder G, Korndörfer G (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 241–255

    Google Scholar 

  • Berthelsen S, Hurney A, Kingston G, Rudd A, Garside AL, Noble AD (2001b) Plant cane responses to silicated products in the Mossman, Innisfail and Bundaberg districts. Proc Aus Soc Sugar Cane Technol 23:297–303

    Google Scholar 

  • Berthelsen S, Noble AD, Kingston G, Hurney AP, Rudd A, Garside AL (2003) Improving yield and CCS in sugarcane through the application of silicon based amendments. Final report SRDC project CLW009. Sugar Research and Development Corporation, CSIRO Land and Water, p 138

  • Bezerra BKL, Lima GPP, dos Reis AR, de Almeida SM, de Camargo MS (2019) Physiological and biochemical impacts of silicon against water deficit in sugarcane. Acta Physiol Plant 41:189. https://doi.org/10.1007/s11738-019-2980-0

    Article  CAS  Google Scholar 

  • Bharwana S, Ali S, Farooq M, Iqbal N, Abbas F, Ahmad MSA (2013) Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes and suppressed lead uptake and oxidative stress in cotton. J Bioremed Biodeg 4:187. https://doi.org/10.4172/2155-6199.1000187

    Article  CAS  Google Scholar 

  • Bhuiyan SA, Croft BJ (2015) Effect of silicon fertilizers on sugarcane smut in Australia. Proc Aust Soc Sugar Cane Technol 37:53–60

    Google Scholar 

  • Bi Y, Tian SP, Gua YR, Ge YH, Qin GZ (2006) Sodium silicate reduces post-harvest decay on hami melons: induced resistance and fungi static effects. Plant Dis 90:279–283

    CAS  PubMed  Google Scholar 

  • Bityutskii N, Pavlovic J, Yakkonen K, Maksimovi V, Nikolic M (2014) Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal mobilizing compounds in micronutrient-deficient cucumber. Plant Physiol Biochem 74:205–211

    CAS  PubMed  Google Scholar 

  • Blecker SW, Mcculley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20:1–11. https://doi.org/10.1029/2006GB002690

    Article  CAS  Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste L, Landell MGA, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    CAS  PubMed  Google Scholar 

  • Bokhtiar SM, Huang HR, Li YR, Dalvi VA (2012a) Effect of silicon on yield contributing parameters and its accumulation in abaxial epidermis of sugarcane leaf blades using energy dispersive X-ray analysis. J Plant Nutr 35:1255–1275

    CAS  Google Scholar 

  • Bokhtiar SM, Huang H, Li Y (2012b) Response of sugarcane to calcium silicate on yield, gas exchange characteristics, leaf nutrient concentrations, and soil properties in two different soils. Commun Soil Sci Plant Anal 43:1363–1381. https://doi.org/10.1080/00103624.2012.670516

    Article  CAS  Google Scholar 

  • Brackhage C, Schaller J, Bäucker E, Dudel EG (2013) Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. Silicon 5(3):199–204

    CAS  Google Scholar 

  • Brassioli FB, Prado RM, Fernandes FM (2009) Agronomic evaluation of siderurgy slag in sugarcane during five cycles of production. Bragantia 68:381–387

    Google Scholar 

  • Cadet P, McFarlane SA, Meyer JH (2003) Association between nutrients and rust in sugarcane in KwaZulu-Natal. Proc S Afr Sug Technol Ass 77:223–229

    Google Scholar 

  • Camargo MS, Korndörfer GH (2013) Silicon fertilization: soil availability, plant uptake, crop yield and stalk borer damage. Sugar J 75:10

    Google Scholar 

  • Camargo MS, Korndörfer GH, Foltran DE, Henrique CM, Rossetto R (2010) Silicon uptake, yield and Diatraea saccharalis incidence in sugarcane cultivars. Bragantia 69:937–944

    Google Scholar 

  • Camargo MS, Amorim L, Gomes Júnior AR (2013) Silicon fertilization decreases brown rust incidence in sugarcane. Crop Prot 53:72–79

    Google Scholar 

  • Camargo MS, Korndörfer GH, Wyler P (2014) Silicate fertilization of sugarcane cultivated in tropical soils. Field Crop Res 167:64–75

    Google Scholar 

  • Camargo MS, Bezerra BKL, Vitti AC, Silva MA, Oliveira AL (2017) Silicon fertilization reduces the deleterious effects of water deficit in sugarcane. J Soil Sci Plant Nutr 17(1):99–111

    Google Scholar 

  • Camargo MS, Bezerra BKL, Holanda LA, Oliveira AL, Vitti AC, Silva MA (2019) Silicon fertilization improves physiological responses in sugarcane cultivars grown under water deficit. J Soil Sci Plant Nutr 19:81. https://doi.org/10.1007/s42729-019-0012-1

    Article  CAS  Google Scholar 

  • Chalmardi ZK, Zadeh AA (2013) Role of silicon in alleviation of iron deficiency and toxicity in hydroponically-grown rice (Oryza sativa L.) plants. J Sci Technol Greenhouse Cult 3:89–96

    Google Scholar 

  • Chandiposha M (2013) Potential impact of climate change in sugarcane and mitigation strategies in Zimbabwe. Afr J Agril Res 8:2814–2818

    Google Scholar 

  • Chen CH, Lewin J (1969) Silicon as a nutrient element for Equisetum arvense. Can J Bot 7:125–131

    Google Scholar 

  • Chen D, Cao B, Wang S, Liu P, Deng X, Yin L, Zhang S (2016) Silicon moderated the K deficiency by improving the plant water status in sorghum. Nature 6:1–14. https://doi.org/10.1038/srcp22882

    Article  Google Scholar 

  • Cheng BT (1982) Some significant functions of silicon to higher plants. J Plant Nutr 5:1345–1353

    CAS  Google Scholar 

  • Cheong YWY, Halais P (1970) Needs of sugarcane for silicon when growing in highly westhered latosols. Exp Agric 6:99–16

    CAS  Google Scholar 

  • Chérif M, Bélanger RR (1992) Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on long English cucumber. Plant Dis 76:1008–1011

    Google Scholar 

  • Chérif M, Asselin A, Bélanger R (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopath 84:236–242. https://doi.org/10.1094/Phyto-84-236

    Article  Google Scholar 

  • Chhabra ML, Parameswari B, Viswanathan R (2016) Pathogenic behaviour pattern of Colletotrichum falcatum isolates of sugarcane in sub-tropical India. Vegetos Int J Plant Res 29:76–79

    Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    CAS  PubMed  Google Scholar 

  • Clements HF (1965a) The roles of calcium silicate slag in sugar cane growth. Repts Hawaiian Sugar Tech 25:103–126

    Google Scholar 

  • Clements HF (1965b) Effects of silicate on the growth and freckle of sugarcane in Hawaii. Porto Rico Proc Int Soc Sugar Cane Technol 12:197–215

    Google Scholar 

  • Clements HF, Putman EW, Suchisa RH, Yee GIN, Wehling ML (1974) Soil toxicities as causes of sugarcane leaf freckle, Macadamea leaf chlorosis (Keaau), and Maui sugarcane growth failure. Hawaii Agr Expt Sta Tech Bull No 88

  • Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosci 8:2281–2293

    CAS  Google Scholar 

  • Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiol Plant 104:608–614

    CAS  Google Scholar 

  • Comstock JC (2000) Smut: a guide to sugarcane diseases. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (eds) . CIRAD and ISSCT, Montpellier, pp 181–185

    Google Scholar 

  • Conab (2011) Acompanhamento de safra Brasileira: cana-de-açúcar, terceiro levantamento, janeiro/2011, Monitoring of the Brazilian crop harvests: sugarcane, Brasília

  • Conlong DE (1994) A review and perspectives for the biological control of the African sugarcane stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). Agril Ecosys Environ 48:9–17

    Google Scholar 

  • Cornelis JT, Delvaux B, Ranger J, Iserentant A (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochem 97:231–245

    CAS  Google Scholar 

  • Correa RSB, Moraes JC, Auad AM, Carvalho GA (2005) Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the white fly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Neotrop Entomol 34:429–433. https://doi.org/10.1590/S1519-566X2005000300011

    Article  CAS  Google Scholar 

  • Costa RR, Moraes JC (2006) Effects of silicon acid and of acibenzolar-S-methyl on Schizaphis graminum (Rondani) (Hemiptera: Aphididae) in wheat plants. Neotrop Entomol 35:834–839

    CAS  PubMed  Google Scholar 

  • Coulibaly K (1990) Influence of nitrogen fertilization on the attack of sugarcane by stalk borer (Eldana saccharina Walker). Sugarcane Spring(Supplement):18

    Google Scholar 

  • Croft BJ, Braithwaite KS (2006) Management of an incursion of sugarcane smut in Australia. Australas Plant Pathol 35:113–122

    Google Scholar 

  • Crusciol CAC, Foltran R, Rossato OB, McCray M, Rossetto R (2014) Effects of surface application of calcium magnesium silicate and gypsum on soil fertility and sugarcane yield. R Bras Ci Solo 38:1843–1854

    CAS  Google Scholar 

  • Crusciol CAC, de Arruda DP, Fernandes AM, Antonangelo JA, Alleoni LRF, do Nascimento CAC, Rossato OB, McCray JM (2018) Methods and extractants to evaluate silicon availability in sugarcane. Sci Rep 8:916. https://doi.org/10.1038/s41598-018-19240-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danialy M (1985) Investigation of usage biological control, cultural and chemical methods against sugarcane borer in Hafttapeh/ Khuzestan/Iran. M. Sc. thesis, Chamran University, Ahvaz, Iran

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531

    CAS  Google Scholar 

  • Datnoff LE, Rodrigues FA, Seebold KW (2007) Silicon and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul, pp 233–246

    Google Scholar 

  • Datnoff LE, Snyder GH, Deren CW (1992) Influence of silicon fertilizer grades on blast and brown spot development and on rice yields. Plant Dis 76:1011–1013. https://doi.org/10.1094/PD-76-1011

    Article  CAS  Google Scholar 

  • Dean JL, Todd EH (1979) Sugarcane rust in Florida. Sugar J 42:10

    Google Scholar 

  • Desplanques V, Cary L, Mouret JC, Trolard F, Bourrié G, Grauby O, Meunier JD (2006) Silicon transfers in a rice field in Camargue (France). J Geochem Explor 88:190–193

    CAS  Google Scholar 

  • Dhillon RS, von Wuehlisch G (2013) Mitigation of global warming through renewable biomass. Biomass Bioenergy 48:75–89

    Google Scholar 

  • Dias PAS, Sampaio MV, Rodrigues MP, Korndorfer AP, Oliveira RS, Ferreira SE, Korndörfer GH (2014) Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae). Environ Entomol 43:949–956

    CAS  PubMed  Google Scholar 

  • Dinardo-Miranda LL, Garcia V, Parazzi VJ (2002) Efeito de inseticidas no controle de Mahanarva fimbriolata (Stal) (Hemiptera:Cercopidae) e de nematóides fitoparasitos na qualidade tecnológica e na produtividade da cana-de-açúcar. Neotrop Entomol 31:909–914

    Google Scholar 

  • Djajadi D, Hidayati SN, Syaputra R (2016) Effect of soil organic matter and Si liquid fertilizer on growth and yield of sugarcane. J Biol Res 22(1):22–26

    Google Scholar 

  • Djamin A, Pathak MD (1967) Role of silica in resistance to Asiatic rice borer, Chilo suppressalis Walker, in rice varieties. J Econ Entomol 60:347–351

    CAS  Google Scholar 

  • Doucet FJ, Schneider C, Bones SJ, Kretchmer A, Moss I, Tekely P, Exley C (2001) The formation of hydroxyaluminosilicates of geochemical and biological significance. Geochim Cosmochim Acta 65:2461–2467

    CAS  Google Scholar 

  • Dufey I, Gheysens S, Ingabire A, Lutts S, Bertin P (2014) Silicon application in cultivated rices (Oryza sativa L and Oryza glaberrima Steud) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. J Agron Crop Sci 200:132–142

    CAS  Google Scholar 

  • Ebrahim MKH, Vogg G, Osman MNEH, Kamor E (1998) Photosynthetic performance and adaptation of sugarcane at suboptimal temperatures. J Plant Physiol 153(6):587–692

    CAS  Google Scholar 

  • Elawad SH, Street JJ, Gascho GJ (1982) Response of sugarcane to silicate source and rate. II. Leaf freckling and nutrient content. Agron J 74(3):484–487

    Google Scholar 

  • Elawad SH, Allen JR, Gascho GJ (1985) Influence of UV-B radiation and soluble silicates on the growth and nutrient concentration of sugarcane. Proc Soil Crop Science Soc Florida 44:134–141

    CAS  Google Scholar 

  • Elephant D, Miles N, Dlungele P (2016) Evaluation of the impact of a range of soil ameliorants on soil chemical and biological properties. Proc South Afr Sug Technol Ass 89:170–180

    Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York

    Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17. https://doi.org/10.1073/pnas.91.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664. https://doi.org/10.1146/annurev.arplant.50.1.641

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principals and perspectives. Sinauer Associates Inc., Massachusetts, Sunderland

    Google Scholar 

  • Exley C (2012) Reflections upon and recent insight into the mechanism of formation of hydroxy aluminosilicates and the therapeutic potential of silicic acid. Coord Chem Rev 256:82–88

    CAS  Google Scholar 

  • Fang CX, Wang QS, Yu Y, Huang LK, Wu XC, Lin WX (2011) Silicon and its uptaking gene Lsi1 in regulation of rice UV-B tolerance. Acta Agron Sin 37:1005–1011

    CAS  Google Scholar 

  • Factfish (2019) Sugar cane, production quantity (tons)-for all countries. Retrieved in March 5, 2019, http://www.factfish.com/statistic/sugar+cane,+production+quantity

  • FAO (2015) Food and agriculture organization of the United Nations. Climate change and food systems: global assessments and implications for food security and trade. Food Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAOSTAT (2019) Top production - world (total) in 2017. Report, Food and Agricultural Organization, United Nations: Economic and Social Department, The Statistical Division, retrieved in March 5, 2019. Available online at http://faostat.fao.org/site/339/default.aspx

  • Farmer VC, Fraser AR, Tait JM (1979) Characterization of the chemical structures of natural and synthetic aluminosilicates gels and sols by infrared spectroscopy. Geochim Cosmochim Acta 43:1417–1420

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Letters 249:1–6

    CAS  Google Scholar 

  • Ferreira EA, Ventrella MC, Santos JB, Barbosa MHP, Silva AA, Procópio SS, Silva EAM (2007) Leaf blade quantitative anatomy of sugarcane cultivars and clones. Planta Daninha Vicosa-MG 25:25–34

    Google Scholar 

  • Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M (2017) Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Front Plant Sci 8:1–18

    Google Scholar 

  • Fox RL, Silva JA (1978) Symptoms of plant malnutrition: silicon, an agronomically essential nutrient for sugarcane. Illust. Conc. Trop. Agric. No. 8. Dept. Agron. Soil Sci., College of Trop. Agric. and Human Res., Univ. of Hawaii, Honolulu, HI

  • Fox RL, Silva JA, Younge OR, Plucknett DL, Sherman GD (1967) Soil and plant silicon and silicate response by sugarcane. Soil Sci Soc Am Proc 31:775–779

    CAS  Google Scholar 

  • Foy CD (1992) Soil chemical factors limiting plant root growth. Adv Soil Sci 19:97–149

    CAS  Google Scholar 

  • Francisco PRM, Santos D, Lima ERV, Moraes JMN, Trindade HCM (2017) Mapping of pedological potential of soils for cultivation of sugarcane in Paraíba state using geotechnologies. J Hyperspectr Remote Sens 7:306–314

    Google Scholar 

  • Führs H, Götze S, Specht A, Erban A, Gallien S, Heintz D, Van Dorsselaer A, Kopka J, Braun H-P, Horst WJ (2009) Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon. J Exp Bot 60:1663–1678

    PubMed  PubMed Central  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470

    CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    CAS  Google Scholar 

  • Gascho G (2001) Silicon sources for agriculture. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Studies in plant science, vol 8. Elsevier, Amsterdam, pp 197–207

    Google Scholar 

  • Gascho GJ (1976) Silicon status of Florida sugarcane. Proc Soil Crop Science Soc Florida 36:188–191

    CAS  Google Scholar 

  • Gascho GJ (1978) Response of sugarcane to calcium silicate slag. I. Mechanism of response in Florida. Proc Soil Crop Sci Soc Fla 37:55–58

    Google Scholar 

  • Gascho GJ, Andries HJ (1974) Sugarcane response to calcium silicate slag applied to organic and sand soils. Proc Int Soc Sugar cane Technol 15:543–551

    Google Scholar 

  • Gawander J (2007) Impact of climate change on sugar-cane production in Fiji. WMO Bull 56(1):34–39

  • Geng A, Wang X, Wu L, Wang F, Wu Z, Yang H, Chen Y, Wen D, Liu X (2018) Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure. Ecotoxicol Environ Saf 158:266–273

    CAS  PubMed  Google Scholar 

  • Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) MicroRNAs and drought responses in sugarcane. Front Plant Sci 6:58. https://doi.org/10.3389/fpls.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758

    Google Scholar 

  • Gill SS, Tujeja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Goebel FR, Sallam N (2011) New pest threats for sugarcane in the new bioeconomy and how to manage them. Curr Opin Environ Sustain 3(1–2):81–89

    Google Scholar 

  • Goldberg S, Glaubig RA (1988) Boron and silicon adsorption on an aluminium oxide. Soil Sci Soc Am J 52:87–91

    CAS  Google Scholar 

  • Gomes FB, Moraes JCD, Santos CDD, Goussain MM (2005) Resistance induction in wheat plants by silicon and aphids. Sci Agric 62:547–551

    CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    CAS  Google Scholar 

  • Gonzalo MJ, Lucena JJ, Hernandez-Apaolaza L (2013) Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant Physiol Biochem 70:455–461

    CAS  PubMed  Google Scholar 

  • Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Ogawa S, Yahaya MS, Morita O (2003) Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Sci 164:349–356

    CAS  Google Scholar 

  • Goussain MM, Moraes JC, Carvalho JG, Nogueira NL, Rossi ML (2002) Efeito da aplicacao de silicio em plantas de milho no desenvolvimento biologico da lagarta-do-cartucho Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotrop Entomol 31:305–310

    CAS  Google Scholar 

  • Goussain MM, Prado E, Moraes JC (2005) Effect of silicon applied to wheat plants on the biology and probing behaviour of the green bug Schizaphis graminum (Rond.) (Hemiptera:Aphididae). Neotrop Entomol 34:807–813. https://doi.org/10.1590/S1519-566X2005000500013

    Article  CAS  Google Scholar 

  • Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR (2012) Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J 72:320–330

    PubMed  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress. I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39:1885–1903

    CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier JD (2012a) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213. https://doi.org/10.1007/s13593-011-0039-8

    Article  Google Scholar 

  • Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier JD (2012b) Long term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184

    CAS  Google Scholar 

  • Habibi G (2015) Exogenous silicon leads to increased antioxidant capacity in freezing stressed pistachio leaves. Acta Agric Slov 105:43–52

    CAS  Google Scholar 

  • Han Y, Lei W, Wen L, Hou M (2015) Silicon mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PLoS One 10:0120557. https://doi.org/10.1371/journal.pone.0120557

    Article  CAS  Google Scholar 

  • Hanifa AM, Subramaniam TR, Ponnaiya BWX (1974) Role of silica in resistance to the leaf roller, Cnaphalocrocis medinalis Guenee, in rice. Indian J Exp Biol 12:463–465

    CAS  Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) application of silicon enhanced drought tolerance in Sorgum bicolor. Physiol Plant 123:459–466

    CAS  Google Scholar 

  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxová M, Sugimoto Y (2003) Silicon induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749

    CAS  PubMed  Google Scholar 

  • Haynes RJ (2014) A contemporary overview of silicon availability in agricultural soils. J Plant Nutr Soil Sci 177:831–844

    CAS  Google Scholar 

  • Haynes RJ, Belyaeva ON, Kingston G (2013) Evaluation of industrial wastes as sources of fertilizer silicon using chemical extractions and plant uptake. J Plant Nutr Soil Sci 176:238–248. https://doi.org/10.1002/jpln.201200372

    Article  CAS  Google Scholar 

  • Haynes RJ (2017) Significance and role of Si in crop production. Adv Agron 146:83–166. https://doi.org/10.1016/bs.agron.2017.06.001

    Article  Google Scholar 

  • Haysom MBC, Chapman LS (1975) Some aspects of the calcium silicate trials at Mackay. Proc Qld Soc Sugar Cane Technol 42:117–122

    CAS  Google Scholar 

  • He W, Yang M, Li Z, Qiu J, Liu F, Qu X, Qiu Y, Li R (2015) High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown plant hopper. Crop Prot 67:20–25. https://doi.org/10.1016/j.cropro.2014.09.013

    Article  CAS  Google Scholar 

  • Heckman J (2013) Silicon: a beneficial substance. Better Crops 97(4):14–16

    Google Scholar 

  • Hernandez-Apaolaza L (2014) Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta 240:447–458. https://doi.org/10.1007/s00425-014-2119-x

    Article  CAS  PubMed  Google Scholar 

  • Hingston FJ, Posner AM, Quirk JP (1972) Anion adsorption by goethite and gibbsite. 1. The role of the proton in determining adsorption envelopes. J Soil Sci 23:177–192

    CAS  Google Scholar 

  • Hoang NVA, Furtado FC, Botha BA, Simmons HRJ (2015) Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front Bioeng Biotechnol 3:182

    PubMed  PubMed Central  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96(6):1027–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou M, Han Y (2010) Silicon-mediated rice plant resistance to the Asiatic rice borer (lepidoptera: crambidae): effects of silicon amendment and rice varietal resistance. J Econ Entomol 103:1412–1419. https://doi.org/10.1603/ec09341

    Article  CAS  PubMed  Google Scholar 

  • Houghton RA, Lawrence KT, Hackler JL, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Chang Biol 7(7):731–746

    Google Scholar 

  • Hoy JW (1986) Incidence of sugarcane smut in Louisiana and its effect on yield. Plant Dis 70:59–60

    Google Scholar 

  • Huang HR, Xu L, Bokhtiar SM, Manoj KS, Li YR, Yang LT (2011) Effect of calcium silicate fertilizer on soil characteristics sugarcane nutrients and its yield parameters. J South Agric 42:756–759

    CAS  Google Scholar 

  • Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecol 85:1383–1398

    Google Scholar 

  • Indhumathi VS, Chandramani P, Chinniah C, Mahendran PP, Kumutha K (2018) Impact of silicon on sugarcane leafhopper, Pyrilla perpusilla Walker by enhancing parasitism of Epiricania melanoleuca (Fletcher). J Biol Control 32(3):155–159. https://doi.org/10.18311/jbc/2018/21489

    Article  Google Scholar 

  • Inman-Bamber N, Lakshmanan P, Park S (2012) Sugarcane for water limited environments: theoretical assessment of suitable traits. Field Crop Res 134:95–104. https://doi.org/10.1016/j.fcr.2012.05.004

    Article  Google Scholar 

  • Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York

    Google Scholar 

  • IPCC (2014) Intergovernmental panel on climate change. Climate change 2014: synthesis report. In: Team CW, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • IPNI (2015) Nutri-facts. International Plant Nutrition Institute, Silicon. No.14. http://www.ipni.net/publication/nutrifacts-na.nsf/0/A7B4AB4D,FILE/NutriFacts-NA-14.pdf, accessed on 17th Sep 2019

  • Irvine JE (1963) Effects of severe freezing on quality of mill cane. The Sugar Bull 13:837–839

    Google Scholar 

  • Irvine JE (1968) Effects of an early freeze on Louisiana sugarcane. Int Soc Sugar Cane Technol 13:837–839

    Google Scholar 

  • Jain R, Singh A, Jain N, Tripathi P, Chandra A, Shukla SK, Berghe DV, Solomon S (2018) Response of silixol sugarcane to growth and physio-biochemical characteristics of sugarcane. Silicon 20(4):439–444

    CAS  Google Scholar 

  • Jayabad V, Chockalingam S (1990) Studies on drought management in sugarcane. Cooperative Sug 21:571–573

    Google Scholar 

  • Jiang ZP, Liao Q, Wei GP, Tan YM, Chen GF, Liu B, Wang YN (2011) Effect of optimum fertilization model between silicon and phosphorus on yield and quality of sugarcane in lateristic red earth area of Guangxi. J Anhui Agric Sci 39:22233–22236

    CAS  Google Scholar 

  • Wu J-W, Yu S, Yong-Xing Z, Yi-Chao W, Hai-Jun G (2013) Mechanism of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23(6):815–825

    CAS  Google Scholar 

  • Jung HJG, Varel VH, Weimer PJ, Ralph J (1999) Accuracy of klason lignin and acid detergent lignin methods as assessed by bomb calorimetry. J Agric Food Chem 47:2005–2008

    CAS  PubMed  Google Scholar 

  • Juo ASR, Sanchez PA (1986) Soil nutritional aspects with a view to characterize upland rice environment. In: Upland rice research. International Rice Research Institute, Los Banos, pp 81–94

    Google Scholar 

  • Kaiser C, Van der Marve RBTF, Labuschagne L (2005) In-vitro inhibition of mycelial growth of several phytopatghogenic fungi, including Phytophthora cinnamomi by soluble silicon. South Afr Avacado Growers’ Assoc Yearbook 28:70–74

    Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218

    Google Scholar 

  • Katz O (2019) Plant silicon content is a functional trait: implications in a changing world. Flora 254:88–94

    Google Scholar 

  • Kaufman PB, Takeoka Y, Carlson TJ, Bigelow WC, Jones JD, Moore PH, Ghosheh NS (1979) Studies on silica deposition in sugarcane (Saccharum spp.) using scanning electron microscopy, energy dispersive X-ray analysis, neutron activation analysis, and light microscopy. Phytomorph 29:185–193

    Google Scholar 

  • Kaufman PB, Dayanandan P, Franklin CI, Takeoka Y (1985) Structure and function of silica bodies in the epidermal system of grass shoots. Ann Bot 55:487–507

    Google Scholar 

  • Kaur S, Kaur N, Siddique KHM, Nayyar H (2016) Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Arch Agron Soil Sci 62(7):905–920. https://doi.org/10.1080/03650340.2015.1101070

    Article  Google Scholar 

  • Kaya C, Tuna AL, Sonmez O, Ince F, Higgs D (2009) Mitigation effects of silicon on maize plants grown at high zinc. J Plant Nutr 32:1788–1798

    CAS  Google Scholar 

  • Keeping MG (2017) Uptake of silicon by sugarcane from applied sources may not reflect plant-available soil silicon and total silicon content of sources. Front Plant Sci 8:760. https://doi.org/10.3389/fpls.2017.00760

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeping MG, Meyer GH (2002) Calcium silicate enhances resistance of sugarcane to the African stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). Agril Forest Entomol 4:265–274

    Google Scholar 

  • Keeping MG, Meyer GH (2003) Effect of four sources of silicon on resistance of sugarcane varieties to Eldana saccharina Walker (Lepidoptera: Pyralidae). Proc South Afr Sug Technol Assoc 7:99–103

    Google Scholar 

  • Keeping MG, Meyer GH (2006) Silicon mediated resistance of sugarcane to Eldana saccharina Walker (Lepidoptera: Pyralidae): effects of silicon source and cultivar. J Appl Entomol 130(8):410–420. https://doi.org/10.1111/j.1439-0418.2006.01081.x

    Article  CAS  Google Scholar 

  • Keeping MG, Reynolds OL (2009) Silicon in agriculture: new insights, new significance and growing application. Ann Appl Biol 155:153–154. https://doi.org/10.1111/j.1744-7348.2009.00358.x

    Article  CAS  Google Scholar 

  • Keeping MG, Rutherford RS (2004) Resistance mechanisms of South African sugarcane to the African stalk borer Eldana saccharina (Lepidoptera: Pyralidae): a review. Proc South Afr Sug Technol Ass 78:307–311

    Google Scholar 

  • Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer to Eldana saccharina. Environ Exp Bot 66:54–60

    CAS  Google Scholar 

  • Keeping MG, Meyer JH, Sewpersad C (2013) Soil silicon amendments increase resistance of sugarcane to stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) under field conditions. Plant Soil 363:297–318. https://doi.org/10.1007/s11104-012-1325-1

    Article  CAS  Google Scholar 

  • Keeping MG, Miles N, Sewpersad C (2014) Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrate) infestations in sugarcane. Front Plant Sci 5:289. https://doi.org/10.3389/fpls.2014.00289

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeping MG, Miles N, Rutherford RS (2017) Liming an acid soil treated with diverse silicon sources: effects on silicon uptake by sugarcane (Saccharum spp. hybrids). J Plant Nutr 40(10):1417–1436. https://doi.org/10.1080/01904167.2016.1267751

    Article  CAS  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33:137–149

    CAS  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Lee IJ (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:1–7

    Google Scholar 

  • King BH, Crowe ML, Blackmore MD (1998) Effects of leaf age on oviposition and on offspring fitness in the imported willow leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae). J Insect Behav 11:23–36

    Google Scholar 

  • Kingston G (2008) Silicon fertilizers – requirement and field experiences. In: Proceedings of the 4th international silicon in agriculture conference, Wild Coast, Port Edward, South Africa, pp. 82–89

  • Kingston G, Berthelsen S, Hurney AP, Rudd A, Noble AD (2005) In: Impact of calcium silicate amendments on sugarcane yield and soil properties in Queensland, Australia. Proceedings of the 3rd international conference on silicon in agriculture, Uberlandia, Brazil, pp. 107–117

  • Klotzbücher T, Klotzbücher A, Kaiser K, Vetterlein D, Jahn R, Mikutta R (2018) Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis. Glob Chang Biol 24:e183–e189

    PubMed  Google Scholar 

  • Klotzbücher T, Leuther F, Marxen A, Vetterlen D, Horgan FG, Jahn R (2015) Forms and fluxes of potential plant available silicon in irrigated lowland rice production (Laguna, the Phillippines). Plant Soil 398:104–115

    Google Scholar 

  • Klotzbücher T, Marxen A, Jahn R, Vetterlein D (2016) Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in top-soils and plant silicon uptake. Nutr Cycl Agroecosyst 105(2):157–168

    Google Scholar 

  • Kokko EG, Schaber BD, Entz T (1993) Quantification of mandibular wear of female alfalfa leafcutter bees, Megachile Rotundata (F.) (Hymenoptera: Megachilidae), by image analysis. Can Entomol 125:93–99

    Google Scholar 

  • Korndörfer GH, Gascho GJ (1999) Avaliação de fontes de silício Para o arroz. In: Congresso Nacional de Arroz Irrigado. Pelotas, Embrapa, pp 313–316

    Google Scholar 

  • Korndorfer GH, Lepsch I (2001) Effect of silicon on plant growth and crop yield. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 133–147

    Google Scholar 

  • Korndorfer AP, Cherry R, Nagata R (2004) Effect of calcium silicate on feeding and development of tropical sod webworms (Lepidoptera: Pyralidae). Flor Entomol 87:393–395. https://doi.org/10.1653/0015-4040(2004)087[0393:EOCSOF]2.0.CO;2

    Article  Google Scholar 

  • Korndörfer AP, Grisoto E, Vendramin JD (2011) Induction of insect plant resistance to the spittlebug Mahanarvafi mbriolata Stål (Hemiptera: Cercopidae) in sugarcane by silicon application. Neotrop Entomol 40:387–392

    PubMed  Google Scholar 

  • Korth KL, Doege SJ, Park SH, Goggin FL, Wang Q, Gomez SK, Liu G, Jia L, Nakata PA (2006) Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol 141:188–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kostic L, Nikoloc N, Bosnic D, Samardzie J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419:447–455. https://doi.org/10.1007/s11104-017-3364-0

    Article  CAS  Google Scholar 

  • Kuniata LS, Sweet CPM (1994) Management of Sesamia griscesens walker (Lepidoptera: Noctuidae), a sugarcane borer in Papua New Guinea. Crop Prot 13:488–493

    Google Scholar 

  • Kuniata LS, Chandler KJ, Korowi KT (2001) Management of sugarcane pests at Ramu, Papua New Guinea. In: Proceedings of the International Society of Sugar Cane Technologists. Vol. 2. Brisbane, Australia, 17–21, September 2001, pp. 382–388

  • Kunoh H (1990) Ultrastructure and mobilization of ions near infection sites. Annu Rev Phytopathol 28:93–111

    CAS  Google Scholar 

  • Kvedaras OL, Keeping MG, Goebel R, Byrne M (2005) Effects of silicon on African stalk borer, Eldana saccharina (Lepidoptera: Pyralidae) in sugarcane. Proc South Afr Sug Technol Assoc 79:359–362

    Google Scholar 

  • Kvedaras OL, Byrne MJ, Coombes NE, Keeping MG (2009a) Influence of plant silicon and sugarcane cultivar on mandibular wear in the stalk borer Eldana saccharina. Agric For Entomol 11:301–306. https://doi.org/10.1111/j.1461-9563.2009.00430.x

    Article  Google Scholar 

  • Kvedaras OL, An M, Choi YS, Gurr GM (2009b) Silicon enhances natural enemy attraction and biological control through induced plant defences. Bull Entomol Res. https://doi.org/10.1017/S0007485309990265

  • Kvedaras OL, Keeping MG (2007) Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomol Exp Appl 125:103–110. https://doi.org/10.1111/j.1570-7458.2007.00604.x

    Article  CAS  Google Scholar 

  • Kvedaras OL, Keeping MG, Goebel FR, Byrne MJ (2007a) Larval performance of the pyralid borer Eldana saccharina Walker and stalk damage in sugarcane: influence of plant silicon, cultivar and feeding site. Int J Pest Managt 53:183–195. https://doi.org/10.1080/09670870601110956

    Article  CAS  Google Scholar 

  • Kvedaras OL, Keeping MG, Goebel R, Byrne M (2007b) Water stress augments silicon-mediated resistance of susceptible sugarcane cultivars to the stalk borer, Eldana saccharina (Lepidoptera: Pyralidae). Bull Entomol Res 97:175–183. https://doi.org/10.1017/S0007485307004853

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan P, Robinson N (2014) Stress physiology: abiotic stresses. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 411–434

    Google Scholar 

  • Lee LH, Chan YS, Lio ST (1965) The application of bagasse furnace ash to sugarcane fields. Rep Taiwan Sugar Exp Sta 38:53–79

    Google Scholar 

  • Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340

    Google Scholar 

  • Leslie G (2004) Pests of sugarcane. In: James G (ed) Sugarcane. Blackwell Science, Oxford, pp 78–100

    Google Scholar 

  • Lewin J, Reimann BEF (1969) Silicon and plant growth. Annu Rev Plant Physiol 20:289–304

    CAS  Google Scholar 

  • Liang YC (1998) Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 8:289–296

    Google Scholar 

  • Liang YC, Chen QIN, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    CAS  PubMed  Google Scholar 

  • Liang YC, Zhu J, Li ZJ, Chu GX, Ding YF, Zhang J, Sun WC (2008) Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Exp Bot 64:286–294

    CAS  Google Scholar 

  • Liang YC, Nikolic M, Belanger R, Gong H, Song A (2015) Silicon in agriculture: from theory to practice. Springer, Dordrecht

    Google Scholar 

  • Li WB, Shi XH, Wang H, Zhang FS (2004) Effects of silicon on rice leaves resistance to ultraviolet-B. Acta Bot Sin 46:691–697

    CAS  Google Scholar 

  • Lima de Oliveira RL, de Mello PR, Felisberto G, Checchio MV, Gratão PL (2019) Silicon mitigates manganese deficiency stress by regulating the physiology and activity of antioxidant enzymes in sorghum plants. J Soil Sci Plant Nutr 19:524. https://doi.org/10.1007/s42729-019-00051-w

    Article  CAS  Google Scholar 

  • Lobato AKS, Luz LM, Costa RCL, Sanyos-Filhq S, Meirelles ACS, Oliveira Neto CF, Langhinghouse HD, Neto MAM, Alves GAR, Lopes MJS, Neves HKB (2009) Silicon exercises influence on nitrogen components in pepper subjected to water deficit? Res Aust J Biol Sci 4:1048–1055

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. https://doi.org/10.1126/science.1204531

    Article  CAS  Google Scholar 

  • Long WH (1969) Insecticidal control of moth borers in sugarcane. In: Williams JR, Metcalfe JR, Mungomery RW, Mathes R (eds) Pests of sugar cane. Elsevier, Amsterdam, pp 149–161

    Google Scholar 

  • Lucas Y, Luizão FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science 260:521–523

    CAS  PubMed  Google Scholar 

  • Lux A, Luxova M, Abe J, Morita S, Inanaga S (2003) Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant Soil 255:85–91

    CAS  Google Scholar 

  • Lux A, Luxová M, Morita S, Abe J, Inanaga S (1999) Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.). Can J Bot 77:955–960

    CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    CAS  Google Scholar 

  • Ma JF (2010) Si transporters in higher plant. In: Jhon PT, Bienert PG (eds) MIPs and their role in the exchange of materials. Landes Bioscience, Texas, pp 99–109

    Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertiliser, and plant silicon research in Japan. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    CAS  PubMed  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 17–39

    Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro K, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Kazunori T, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    CAS  PubMed  Google Scholar 

  • Maas EV, Grieve CM (1990) Spike and leaf development in salt stressed wheat. Crop Sci 30:1309–1313

    Google Scholar 

  • Machado R, Ribeiro R, Marchiori P, Machado D, Machado E, Landell M (2009) Biometric and physiological responses to water deficit in sugarcane at different phenological stages. Pes Agropec Brasil 44:1575–1582. https://doi.org/10.1590/S0100-204X2009001200003

    Article  Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active UV radiation reaching the earth’s surface. J Photochem Photobiol B 46:5–19

    CAS  PubMed  Google Scholar 

  • Makabe S, Kakuda K, Sasaki Y, Ando T, Fujji H, Ando H (2009) Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan. Soil Sci Plant Nutr 55:300–308. https://doi.org/10.1111/j.1747-0765.2008.00353.x

    Article  CAS  Google Scholar 

  • Marschner H (1995) Marschner’s mineral nutrition of higher plants, Second edn. Academic, London

    Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants, Third edn. Academic, London

    Google Scholar 

  • Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. In: Proceedings of the Royal Society of London. Royal Society, London, pp 2299–2304

    Google Scholar 

  • Massey FP, Hartley SE (2009) Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol 78:281–291

    PubMed  Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2006) Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. J Anim Ecol 75:595–603

    PubMed  Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2007) Herbivore specific induction of silica-based plant defences. Oecolog 152:677–683. https://doi.org/10.1007/s00442-007-0703-5

    Article  Google Scholar 

  • Matichenkov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, Studies in Plant Science, vol 8. Elsevier, Amsterdam, pp 209–219

    Google Scholar 

  • Matichenkov VV, Calvert DV (2002) Silicon as a beneficial element for sugarcane. J Am Soc Sugar Cane Technol 22:21–29

    Google Scholar 

  • Maxwell FG, Jenkins JN, Parrott WL (1972) Resistance of plants to insects. Adv Agron 24:187–265

    Google Scholar 

  • McColloch JW, Salmon SC (1923) The resistance of wheat to the hessian fly–a progress report. J Econ Entomol 16:293–298

    Google Scholar 

  • McCray JM, Ji S (2012) Calibration of sugarcane response to calcium silicate on Florida Histosols. J Plant Nutr 35:1192–1209

    CAS  Google Scholar 

  • McCray JM, Ji SN (2013) Comparison of silicon sources for sugarcane on mineral and organic soils in Florida. J Amer Soc Sugar Cane Technol 33:1–19

    Google Scholar 

  • McFarlane K, McFarlane SA, Moodley D, Rutherford RS (2006) Fungicide trials to determine the effect of brown rust on the yield of sugarcane variety N29 (short communication). Proc South Afr Sugar Technol Assoc 80:297–300

    Google Scholar 

  • McKeague JA, Cline MG (1963) Silica in soils. Adv Agron 15:339–396

    Google Scholar 

  • McNaughton SJ, Tarrants JL, McNaughton MM, Davis RD (1985) Silica as a defence against herbivory and a growth promoter in African grasses. Ecol 66:528–535

    CAS  Google Scholar 

  • Medeiros DB, Silva EC, Nogueira RJMC, Teixeira MM, Buckeridge MS (2013) Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theor Exper Plant Physiol 25:213–222

    Google Scholar 

  • Medina-Gonzales OA, Fox RL, Bosshart RP (1988) Solubility and availability to sugarcane (Saccharum spp.) of two silicate materials. Fert Res 16:3–13. https://doi.org/10.1007/BF01053310

    Article  CAS  Google Scholar 

  • Meena VD, Dotaniya ML, Coumar V, Rajendiram S, Ajay KS, Subba Rao A (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sect B Biol Sci 84(3):505–518

    CAS  Google Scholar 

  • Melzer SE, Knapp AK, Kirkman KP, Smith MD, Blair JM, Kelly EF (2010) Fire and grazing impacts on silica production and storage in grass dominated ecosystems. Biogeochem 97:263–278

    CAS  Google Scholar 

  • Mengel KB, Kirkby EA (1982) Principles of plant nutrition. Potash Institute, Bern

    Google Scholar 

  • Meyer JH, Keeping MG (2000) Review of research into the role of silicon for sugarcane production. Proc South Afr Sug Technol Assoc 74:29–40

    Google Scholar 

  • Meyer JH, Keeping MG (2001) Past, present and future research of the role of silicon for sugarcane in southern Africa. In: Datnoff LE, Synder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier Science, Amsterdam, pp 257–276

    Google Scholar 

  • Meyer JH, Keeping MG (2005) Impact of silicon in alleviating biotic stress in sugarcane in South Africa. Sugar Intl 23:14–18

    Google Scholar 

  • Miao BH, Han XG, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105:967–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009a) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009b) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Ma JF (2011) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6:991–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake Y (1993) Silica in soils and plants. Sci Rep 81:61–79

    CAS  Google Scholar 

  • Moberly PK, Meyer JH (1975) The amelioration of acid soils in the South African sugar industry. Fert Soc South Afr J 2:57–66

    Google Scholar 

  • Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Remus-Borel W, Belzile F, Ma JF, Bélanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat Si transporter gene. Plant Mol Biol 79:35–46

    CAS  PubMed  Google Scholar 

  • Motomura H, Fujii T, Suzuki M (2006) Silica deposition in abaxial epidermis before the opening of leaf blades of Pleioblastus chaino (Poaceae, Bambusoideae). Ann Bot 97:513–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muneer S, Jeong BR (2015) Silicon decreases Fe deficiency responses by improving photosynthesis and maintaining composition of thylakoid multiprotein complex proteins in soybean plants (Glycine max L.). J Plant Growth Regul 34:485–498

    CAS  Google Scholar 

  • Murillo-Amador B, Yamada S, Yamaguchi T, Rueda-Puente E, Avila-Serrano N, Garcia-Hernandez JL, Lopez-Aguilar R, Troyo-Dieguez E, Nieto-Garibay A (2007) Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J Agron Crop Sci 193:413–421

    CAS  Google Scholar 

  • Naidoo PV, McFarlane SA, Keeping MG, Caldwell PM (2009) Deposition of silicon in leaves of sugarcane (Saccharum spp. hybrids) and its effect on the severity of brown rust caused by Puccinia melanocephala. Proc South Afr Sug Technol Ass 82:542–546

    Google Scholar 

  • Narayanaswamy C, Prakash NB (2009) Calibration and categorization of plant available silicon in rice soils of south India. J Plant Nutr 32:1237–1254

    CAS  Google Scholar 

  • Narayanaswamy C, Prakash NB (2010) Evaluation of selected extractants for plant available silicon in rice soils of southern India. Commun Soil Sci Plant Anal 41:977–989

    CAS  Google Scholar 

  • Neu S, Schaller J, Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci Rep 7:40829. https://doi.org/10.1038/srep40829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann D, zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochem 56:685–692

    CAS  Google Scholar 

  • Nicholas DJD (1961) Minor mineral elements. Annu Rev Plant Physiol 12:63–90

    CAS  Google Scholar 

  • Nikpay A (2016) Improving biological control of stalk borers in sugarcane by applying silicon as a soil amendment. J Plant Prot Res 56(4):394–501

    CAS  Google Scholar 

  • Nikpay A, Laane HM (2020) Foliar amendment of silicic acid on population of yellow mite, Oligonychus sacchari (Acari: Tetranychidae) and its predatory beetle, Stethorus gilvifrons (Col.: Coccinellidae) on two sugarcane commercial varieties. Persian J Acarol 9(1):57–66

    Google Scholar 

  • Nikpay A, Nejadian ES (2014) Field applications of silicon-based fertilizers against sugarcane yellow mite Oligonychus sacchari. Sugar Technol 16:319–324. https://doi.org/10.1007/s12355-013-0276-z

    Article  CAS  Google Scholar 

  • Nikpay A, Masoud A, Morteza K (2011) Evaluation new acaricides in control of sugarcane yellow mite Oligonychus sacchari and effect on Stethorus punctillum in south western part of Iran. In: Global Conference on Entomology, Chiang Mai, Thailand

  • Nikpay A, Masoud A, Morteza K (2012) Potential application of Neem-Azal against spider mite Oligonychus sacchari on two sugarcane commercial cultivars. In: 6th world neem conference, Nagpur, India

  • Nikpay A, Kord H, Goebel F-R, Sharafizadeh P (2014) Assessment of natural parasitism of sugarcane moth borers Sesamia spp. by Telenomus busseolae. Sugar Tech 16:325–328

    Google Scholar 

  • Nikpay A, Nejadian ES, Goldasteh S, Farazmand H (2015) Response of sugarcane and sugarcane stalk borers Sesamia spp. (Lepidoptera: Noctuidae) to calcium silicate fertilization. Neotrop Entomol 44(5):498–503. https://doi.org/10.1007/s13744-015-0298-1

    Article  CAS  PubMed  Google Scholar 

  • Nikpay A, Nejadian ES, Goldasteh S, Farazmand H (2017) Efficacy of silicon formulations on sugarcane stalk borers, quality characteristics and parasitism rate on five commercial varieties. Proc Natl Acad Sci India Sect B Biol Sci 87(2):289–297

    CAS  Google Scholar 

  • Ning DF, Song AL, Fan FL, Li ZJ, Liang YC (2014) Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance. PLoS One 9(7):e102681. https://doi.org/10.1371/journal.pone.0102681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolla A, Korndorfer GH, Coelho L (2006) Efficiency of calcium silicate and carbonate in soybean disease control. J Plant Nutr 29:2049–2061

    CAS  Google Scholar 

  • Okuda A, Takahashi E (1965) The role of silicon. In: The mineral nutrition of the rice plant. John Hopkins Press, Baltimore, pp 126–146

    Google Scholar 

  • Oliveira CMR, Passos R, Andrade FV, Reis ED, Sturm GM, Souza RB (2010) Corretivos da acidez do solo e níveis de umidade no desenvolvimento da cana-de-açúcar. R Bras Ci Agrárias 5:25–31

    Google Scholar 

  • Oliveira ECA, Freire FJ, Oliveira AC, Neto DES, Rocha AT, Carvalho LA (2011) Productivity, water use efficiency, and technological quality of sugarcane subjected to different water regimes. Pesq Agropec Bras 46:617–625

    Google Scholar 

  • O’Reagain PJ, Mentis MT (1989) Leaf silicification in grasses – a review. J Grassland Soc S Afr 6(1):37–43

    Google Scholar 

  • Pan YC, Eow KL, Lian SH (1979) The effect of bagasse furnace ash on the growth of plant cane. Sugar J 42(7):14–16

    Google Scholar 

  • Panda N, Kush GS (1995) Host plant resistance to insects. CAB International, Wallingford

    Google Scholar 

  • Park CS (2001) Past and future advances in silicon research in the Republic of Korea. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 359–371

    Google Scholar 

  • Parra JRP, Botelho PSM, Pinto AS (2010) Biological control of pests as a key component for sustainable sugarcane production. In: Cortez LAB (ed) Sugarcane bioethanol: R&D for productivity and sustainability. São Paulo, Blutcher, pp 441–450

    Google Scholar 

  • Pati S, Pal B, Badole S, Hazra GC, Mandal B (2016) Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Commun Soil Sci Plant Anal 47:284–290

    CAS  Google Scholar 

  • Pavlovic J, Samardzic J, Masimovic V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M (2013) Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplasm. New Phytol 198:1096–1107

    CAS  PubMed  Google Scholar 

  • Pawar MW, Joshi SS, Amodkar VT (2003) Effect of foliar application of phosphorus and micronutrients on enzyme activities and juice quality in sugarcane. Sugar Technol 5(3):161–165

    CAS  Google Scholar 

  • Pemberton CE, Williams JR (1969) Distribution, origins, and spread of sugar cane insect pests. In: Williams JR, Metcalfe JR, Mungomery RW, Mathes JR (eds) Pests of sugarcane. Elsevier, Amsterdam, pp 1–9

    Google Scholar 

  • Penning de Vries FWT (1975) Use of assimilates in higher plants. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 593–621

  • Phonde DB, Deshmukh PS, Banerjee K, Adsule PG (2014) Plant available silicon in sugarcane soils and its relationship with soil properties, leaf silicon and cane yield. Asian J Soil Sci 9:176–180

    Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    CAS  PubMed  Google Scholar 

  • Ponnaiya BWX (1951) Studies on the genus Sorghum. II. The cause of resistance in sorghum to the insect pest Atherigona indica M. Madras Univ J 21:203–217

    Google Scholar 

  • Prakash NB (2002) Status and utilization of silicon in Indian rice farming. Proceedings of the In: Second silicon in agriculture conference, Tsuruoka, Yamagata, Japan, Aug. 22-26, pp. 266–273

  • Prakash NB, Sandhya TS, Sandhya K, Sabyasachi M (2017) Prospects for silicon fertilizers. Fertilizer Focus, November–December Issue, UK, pp. 12–14

  • Prakash NB, Savant NK, Sonar KR (2018) Silicon in Indian agriculture. Westville Publishing House, New Delhi, p 204

    Google Scholar 

  • Prakash NB, Chandrashekar N, Mahendra C, Patil SU, Thippeshappa GN, Laane HM (2011) Effect of foliar spray of soluble silicic acid on growth and yield parameters of wetland rice in hilly and coastal zone soils of Karnataka, South India. J Plant Nutr 34:1883–1893

    CAS  Google Scholar 

  • Rahman A, Wallis C, Uddin W (2015) Silicon induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopath 105:748–757. https://doi.org/10.1094/PHYTO-12-14-0378-R

    Article  CAS  Google Scholar 

  • Raid RN, Anderson DL, Ulloa MF (1992) Influence of cultivar and amendment of soil with calcium silicate slag on foliar disease development and yield of sugarcane. Crop Prot 11(1):84–88

    CAS  Google Scholar 

  • Ramachandran R, Khan ZR (1991) Mechanisms of resistance in wild rice Oryza brachyantha to rice leaf folder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). J Chem Ecol 17:41–65

    CAS  PubMed  Google Scholar 

  • Ramesh P (2000) Effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. J Agron Crop Sci 185:83–89

    Google Scholar 

  • Rao SDV (1967) Hardness of sugarcane varieties in relation to shoot borer infestation. Andhra Agril J 14:99–105

    Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Muneeb-u-Rehman STO, Parvaiz Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Eco-physiology and responses of plants under salt stress. Springer, New York, pp 1–24

    Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    CAS  Google Scholar 

  • Redmond CT, Potter DA (2006) Silicon fertilization does not enhance creeping bent grass resistance to cutworms and white grubs. Appl Turfgrass Sci 6:1–7

    Google Scholar 

  • Reithmaier GMS, Knorr KH, Arnhold S, Planer-Friedrich B, Schaller J (2017) Enhanced silicon availability leads to increased methane production, nutrient and toxicant mobility in peatlands. Sci Rep 7:8728. https://doi.org/10.1038/s41598-017-09-130-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66:108–115. https://doi.org/10.1016/j.pmpp.2005.05.006

    Article  CAS  Google Scholar 

  • Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155:171–186. https://doi.org/10.1111/j.1744-7348.2009.00348.x

    Article  CAS  Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    CAS  PubMed  Google Scholar 

  • Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, Bélanger RR (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopath 94:177–183. https://doi.org/10.1094/PHYTO.2004.94.2.177

    Article  CAS  Google Scholar 

  • Ross LP, Nababsing Y, Cheong WY (1974) Residual effect of calcium silicate applied to sugarcane soils. Proc Int Cong Soc Sugar Cane Technol 15(2):539–542

    Google Scholar 

  • Rozeff N (1992a) Silicon: the bench warmer or unheralded star? Part I. Sugar J 1:20

    Google Scholar 

  • Rozeff N (1992b) Silicon: the bench warmer or unheralded star? Part II. Sugar J 2:10

    Google Scholar 

  • Rozeff N (1992c) Silicon: the bench warmer or unheralded star? Part III. Sugar J 3:21

    Google Scholar 

  • Rutherford RS, Conlong DE (2010) Combating sugarcane pests in South Africa: from researching biotic interactions to biointensive integrated pest management in the field. Proc Int Soc Sug Technol 27:1–17

    Google Scholar 

  • Rutherford RS, Meyer JH, Smith GS, Van Staden J (1993) Resistance to Eldana saccharina (Lepidoptera: Pyralidae) in sugarcane and some phytochemical correlations. Proc South Afr Sug Technol Assoc 67:82–87

    CAS  Google Scholar 

  • Sallam MNS (2006) A review of sugarcane stem borers and their natural enemies in Asia and Indian Ocean Islands: an Australian perspective. Annales de la Societe entomologique de France 42(3–4):263–283

    Google Scholar 

  • Samuels G (1969) Silicon and sugar. Sugar Y Azucar 66(4):25–29

    Google Scholar 

  • Samuels AL, Glass ADM, Ehret DL, Menzies JG (1991a) Mobility and deposition of silicon in cucumber plants. Plant Cell Environ 14:485–492

    Google Scholar 

  • Samuels AL, Glass ADM, Ehret DL, Menzies JG (1991b) Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca funginea). Can J Bot 69:140–146

    CAS  Google Scholar 

  • Sandhya K, Prakash NB, Meunier JD (2018) Diatomaceous earth as a source of silicon on the growth and yield of rice in contrasted soils of southern India. J Soil Sci Plant Nutr 18(2):344–360

    CAS  Google Scholar 

  • Sangster AG (1970) Intracellular silica deposition in immature leaves in 3 species of Gramineae. Ann Bot 34(134):245–257

    CAS  Google Scholar 

  • Sasamoto K (1958) Studies on the relation between silica content of the rice plant and insect pests. IV. On the injury of silicated rice plant caused by the rice-stem-borer and its feeding behaviour. Jpn J Appl Entomol Zool 2:88–92

    Google Scholar 

  • Saumtally S, Autrey LJC (1999) Common rust of sugarcane: progress and prospects. In: Rao GP, Bergamin Fihlo A, Magarey RC, Autrey LJC (eds) Sugarcane pathology volume 1: fungal diseases. Science Publishers Inc, New Hampshire

    Google Scholar 

  • Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. Adv Agron 58:151–199

    CAS  Google Scholar 

  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22(12):1853–1903

    CAS  Google Scholar 

  • Sawant AS, Patil VH, Savant NK (1994) Rice hull ash applied to seedbed reduces dead hearts in transplanted rice. Int Rice Res Notes 19(4):21–22

    Google Scholar 

  • Schaber BD, Kokko EG, Entz T, Richards KW (1993) The effect of spring burning of seed alfalfa fields on leaf characteristics and on mandibular wear of female leaf cutter bees [Megachile rotundata (F.)] (Hymenoptera: Megachilidae). Can Entomol 125:881–886

    Google Scholar 

  • Schaller J, Brackhage C, Dudel E (2012) Silicon availability changes structural carbon ratio and phenol content of grasses. Environ Exp Bot 77(3):283–287

    CAS  Google Scholar 

  • Schaller J, Heimes R, Ma JF, Meunier J-D, Shao JF, Fujii-Kashino M, Knorr KH (2019a) Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant Soil 444(1):399–407

    CAS  Google Scholar 

  • Schaller J, Fauchere S, Joss H, Obst M, Goeckede M, Planer-Friedrich B, Peiffer S, Gilfedder B, Elberling B (2019b) Silicon increases the phosphorus availability of Arctic soils. Sci Rep 9:449

    PubMed  PubMed Central  Google Scholar 

  • Schaller J, Cramer A, Carminati A, Zarebanadkouki M (2020) Biogenic amorphous silica as main driver for plant available water in soils. Sci Rep 10:2424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider C, Doucet F, Strekopytov S, Exley C (2004) The solubility of an hydroxyaluminosilicate. Polyhedron 23:3185–3191

    CAS  Google Scholar 

  • Schroeder BL, Turner P, Meyer JH (1995) Evaluation of a soil aluminium saturation index for use in the south African sugar belt. Proc South Afr Sugar Technol Assoc 69:46–49

    Google Scholar 

  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose. New Phytol 186:385–391

    CAS  PubMed  Google Scholar 

  • Setamou MF, Schulthess F, Bosque-Perez NA, Thomas-odjo A (1993) Effect of N and Si on the bionomics of Sesamia calamistis Hampson (Lepidoptera: Noctuidae). Bull Entomol Res 83:405–411

    Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:76–119

    Google Scholar 

  • Shen X, Zhou Y, Duan L, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    CAS  PubMed  Google Scholar 

  • Shiue JJ (1973) Criteria for predicting silicate slag demand for sugar cane. Rep Taiwan Sug Res Inst 59:15–24

    Google Scholar 

  • Shukla SK, Solomon S, Sharma L, Jaiswal VP, Pathak AD, Singh P (2019) Green technologies for improving cane sugar productivity and sustaining soil fertility in sugarcane based cropping system. Sugar Tech 21(2):186–196

    CAS  Google Scholar 

  • Silva RV, de Lima Oliveira RDA, da Silva FP, Castro DB, Rodrigues FA (2015) Effects of silicon on the penetration and reproduction events of Meloidogyne exigua on coffee roots. Bragantia 74:196–199. https://doi.org/10.1590/1678-4499.360

    Article  CAS  Google Scholar 

  • Silva MA, Soares RAB, Landell MGA, Campana MP (2008) Agronomic performance of sugarcane families in response to water stress. Bragantia 67:656–661

    Google Scholar 

  • Silva WKM, Freitas GP, Coelho Junior LM, Almeida Pinto PAL, Abrãhao R (2019) Effects of climate change on sugarcane production in the state of Paraíba (Brazil): a panel data approach (1990–2015). Clim Chang 154(1–2):195–209. https://doi.org/10.1007/s10584-019-02424-7

    Article  Google Scholar 

  • Singer MJ, Munns DN (1999) Soils: an introduction, 4th edn. Prentice Hall, New Jersey, p 527

    Google Scholar 

  • Singh B, Yazdani SS, Singh R (1993) Relationship between biochemical constituents of sweet potato cultivars and resistance to weevil (Cylas formicarius Fab.) damage. J Entomol Res 17:283–288

    CAS  Google Scholar 

  • Singh P, Jain N, Singh MM, Singh J (2020) Effect of stabilized ortho silicic acid on pre and post-harvest quality attributes of plant and ratoon sugarcane. Silicon. https://doi.org/10.1007/s12633-020-00418-0

  • Smith GS, Nelson AB, Boggino EJA (1971) Digestibility of forages in-vitro as affected by content of silica. J Anim Sci 33:466–467

    CAS  PubMed  Google Scholar 

  • Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2011) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34:71–82

    CAS  Google Scholar 

  • Sosa O Jr (1981) Sugarcane borer, Diatraea saccharalis in Florida: a review. Proceedings, Second Inter-American Sugar Cane Seminar, Inter-American Transport Equipment Co., Miami, Florida, pp. 145–151

  • Souza AP, Gaspar M, Silva EA, Ulian EC, Waclawosky AJ, Nishiyama MYJR et al (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31(8):1116–1127

    PubMed  Google Scholar 

  • Souza TP, Dias RO, Silva-Filho MC (2017) Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol 40:360–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava AK, Rai MK (2012) Sugarcane production: impact of climate change and its mitigation. Biodiversitas 13:214–227

    Google Scholar 

  • Stevenson RA, Rands RD (1938) An annotated list of fungi and bacteria associated with sugarcane and its products. Hawaii Plrs Rec 42:247–313

    Google Scholar 

  • Sukhija HS, Chhuneja PK, Grewal RS (1994) Incidence of sugarcane stalk borer, Chilo auricilius Dudgeon, in relation to application of organic manure and inorganic nutrients. Indian Sugar 44(3):179–181

    Google Scholar 

  • Tai PYP, Miller JD (1986) Genotype x environment interaction for cold tolerance in sugarcane. Int Soc Sugarcane Technol 19:454–462

    Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1982) The effect of silicon on the growth of cucumber plant. In: Proceedings of the 9th international-plant nutrition colloquium. Warwick University, England, pp 664–669

    Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comm Agric Food Chem 2:99–122

    CAS  Google Scholar 

  • Teixeira GCM, de Mello PR, Rocha AMS, dos Santos LCN, dos Santos Sarah MM, Gratão PL, Fernandes C (2020) Silicon in pre-sprouted sugarcane seedlings mitigates the effects of water deficit after transplanting. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-019-00170-4

  • Thaler JS, Fidantsef AL, Bostock RM (2002) Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131–1159

    CAS  PubMed  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1997) Soil fertility and fertilizers, fifth edition, second Indian reprint. Prentice Hall of India Ltd, New Delhi

    Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change: the physical science basis. In: Solomon S, Qin D, Manning M et al (eds) Contribution of WG 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012a) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28:281–291

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012b) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34:279–289

    CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Google Scholar 

  • Tubana BS, Babu T, Datnoff LE (2016) A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci 181(9/10):393–411. https://doi.org/10.1097/SS.0000000000000179

    Article  CAS  Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62(1):10–16

    CAS  Google Scholar 

  • Ulloa MF, Anderson DL (1991) Sugarcane cultivar response to calcium silicate slag on Everglades Histosols. ASSCT Annual Meetings, New Orleans, LA, USA

  • Vaculík M, Lux A, Luxova M, Tanimoto E, Licht-scheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52–58

    Google Scholar 

  • van Antwerpen R, Conlong DE, Miles N (2011) Nutrient management options for reducing Eldana saccharina (Lepidoptera: Pyralidae) infestation of trashed sugarcane fields: results from a preliminary study. Proc S Afr Sugar Technol Assoc 84:298–300

    Google Scholar 

  • Van der Laan M, Miles N (2010) Nutrition of the south African sugar crop: current status and long-term trends. Proc S Afr Sug Technol Ass 83:195–204

    Google Scholar 

  • Vandevenne F, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new loop in the global silica cycle? Front Ecol Environ 10:243–248

    Google Scholar 

  • Verma KK, Liu XH, Wu KC, Singh RK, Song QQ, Malviya MK, Song XP, Singh P, Verma CL, Li YR (2019a) The impact of silicon on photosynthetic and biochemical responses of sugarcane under different soil moisture levels. Silicon. https://doi.org/10.1007/s12633-019-00228-z

  • Verma KK, Wu KC, Singh P, Malviya MK, Singh RK, Song XP, Li YR (2019b) The protective role of silicon in sugarcane under water stress: photosynthesis and antioxidant enzymes. Biomed J Sci Tech Res 15(2):1–7

    Google Scholar 

  • Verma KK, Singh RK, Song QQ, Singh P, Zhang BQ, Song XP, Chen GL, Li YR (2019c) Silicon alleviates drought stress of sugarcane plants by improving antioxidant responses. Biomed J Sci Tech Res 17(1):1–7

    Google Scholar 

  • Viciedo DO, de Mello PR, Lizcano TR, dos Santos LCN, Hurtado AC, Nedd LLT, Gonzalez LC (2019) Silicon supplementation alleviates ammonium toxicity in sugar beet (Beta vulgaris L). J Soil Sci Plant Nutr 19:413–419. https://doi.org/10.1007/s42729-019-00043-w

    Article  CAS  Google Scholar 

  • Vilela M, Moraes JC, Alves E, Santos-Cividanes TM, Santos FA (2014) Induced resistance to Diatraea saccharalis (Lepidoptera: Crambidae) via silicon application in sugarcane. Rev Colomb Entomol 40:44–48

    CAS  Google Scholar 

  • Wang HL, Li CH, Liang YC (2001) Agricultural utilization of silicon in China. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 343–352

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285. https://doi.org/10.1111/j.1747-0765.2007.00135.x

    Article  CAS  Google Scholar 

  • Werner D, Roth R (1983) Silica metabolism. In: Lauch A, Bielseski RL (eds) Encyclopedia of plant physiology, new series, vol 15B. Springer, Berlin, pp 682–694

    Google Scholar 

  • White WH, White PM Jr (2013) Sugarcane borer resistance in sugarcane as affected by silicon applications in potting medium. J Am Soc Sug Cane Technol 33:38–54

    Google Scholar 

  • Wickramasinghe DB, RowelL DL (2006) The release of silicon from amorphous silica and rice straw in Sri Lankan soils. Biol Fertil Soils 42:231–240

    CAS  Google Scholar 

  • Wong You Cheong Y, Heitz A, Deville J (1971a) Foliar symptoms of silicon deficiency in the sugarcane plant. Proc Int Soc Sug Cane Technol 14:766–776

    Google Scholar 

  • Wong You Cheong Y, Heitz A, Deville J (1971b) The effect of silicon on enzyme activity in vitro and sucrose production in sugarcane leaves. Proc Int Soc Sug Cane Technol 14:777–785

    Google Scholar 

  • Wong You Cheong Y, Heits A, De Ville J (1972) Foliar symptoms of silicon deficiency in the sugarcane plant. Proc Cong Int Soc Sugarcane Technol 14:766–776

    Google Scholar 

  • Wong You Cheong Y, Heitz A, Dellville J (1973) The effect of silicon on sugar cane growth in pure nutrient solution. J Sci Food Agric 24:113–119

    Google Scholar 

  • Yadav RL, Shukla SK, Suman A, Singh PN (2009a) Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biol Fertil Soils 45:461–468

    Google Scholar 

  • Yadav RL, Yadav DV, Shukla SK (2009b) Bio intensive agronomy: a paradigm shift in agronomic research. Ind J Agron 54:105–112

    Google Scholar 

  • Yao XQ, Chu JZ, Cai KZ, Liu L, Shi JD, Geng WY (2011) Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biol Trace Elem Res 143:507–517

    CAS  PubMed  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    CAS  Google Scholar 

  • Yin LN, Wang SW, Li JY, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35(11):3099–3107

    CAS  Google Scholar 

  • Yoshida S (1975) The physiology of silicon in rice. Technical bulletin no. 25. Food, Fertilizer and Technical Centre, Taipei

    Google Scholar 

  • Yoshihara T, Sogawa M, Pathak BO, Juliano BO, Sakamura S (1979) Soluble silicic acid as a sucking inhibitory substance in rice against the rice brown plant hopper (Delphacidae: Homoptera). Entomol Exp Appl 26:314–322. https://doi.org/10.1111/j.1570-7458.1979.tb02932.x

    Article  CAS  Google Scholar 

  • Zia MA, Yasmin H, Shair F, Jabeen Z, Mumtaaz S, Hayat Z, ul Husnain, Shah SZ, Afghan S, Hafeez FY, Hassan MN (2019) Glucanolytic rhizobacteria produce antifungal metabolites and elicit ROS scavenging system in sugarcane. Sugar Tech 21(2):244–255

    CAS  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JP (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    CAS  Google Scholar 

  • Zhu J, Liang YC, Ding YF, Li ZJ (2006) Effect of silicon on photosynthesis and its related physiological parameters in two different wheat cultivars under cold stress. Sci Agric Sin 39:1780–1788

    Google Scholar 

  • Zsoldos F, Vashegyi A, Pecsvaradi A, Bona L (2003) Influence of silicon on aluminium toxicity in common and durum wheats. Agronomie 23:349–354

    Google Scholar 

Download references

Acknowledgements

This work was idealised as part of the first author’s doctoral dissertation work. SM would like to profusely thank the Department of Science and Technology (DST), Ministry of Science and Technology (MST), Government of India, for awarding the INSPIRE Fellowship (IF 150512) that helped him pursue his doctoral degree. The authors would also like to acknowledge the statistical division of the Food and Agricultural Organization of the United Nations from which the production, area and yield data of sugarcane were gathered. The authors also take this opportunity to generously thank Prof. R. Siddaramappa, Emeritus scientist (Rtd.) and another anonymous native English speaker for English correction of the manuscript. The authors would also like to profusely thank two anonymous reviewers for their valuable time, suggestions and critical comments which helped to improve the quality of this review paper.

Author information

Authors and Affiliations

Authors

Contributions

SM conceptualised the idea of designing the manuscript. SM performed the literature search and data analysis and wrote the first draft. NBP suggested modifications for further improvement and corrected the final manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Sabyasachi Majumdar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Continuous sugarcane cultivation depletes plant-available Si content in soil.

• Sugarcane production is affected by various biotic and abiotic stresses under field condition.

• Silicon fertilisation has overwhelming importance in sugarcane cultivation.

• Application of Si in sugarcane production could be a productive strategy to cope up with various environmental stresses.

• Evaluation of different sources of Si needs to be explored with higher profitability and nutrient use efficiency in sugarcane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, S., Prakash, N.B. An Overview on the Potential of Silicon in Promoting Defence Against Biotic and Abiotic Stresses in Sugarcane. J Soil Sci Plant Nutr 20, 1969–1998 (2020). https://doi.org/10.1007/s42729-020-00269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-020-00269-z

Keywords

Navigation