Skip to main content

Advertisement

Log in

Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Soil salinity reduces growth of Glycyrrhiza uralensis in arid and semi-arid areas of north-west in China. Silicon (Si) nutrition may alleviate salt stress in many crops including grain crop, fruit crop, and vegetable crop. In this study, the alleviating effects of Si on growth characteristics, antioxidant enzyme activity (SOD and POD) and MDA concentration, and K+ and Na+ concentrations in G. uralensis seedlings subjected to 50 mM NaCl stress were investigated. The results showed that NaCl stress imposed significant reduction in root length, secondary root number, leaf number, and stem and total dry weight of G. uralensis. NaCl stress also significantly reduced the activities of SOD and POD, and ration of K+/Na+, but significantly increased MDA concentration in leaves of G. uralensis seedling. The addition of Si increased SOD and POD activities, and reduced MDA concentration, which resulting in greater reactive oxygen species detoxification and lower lipid peroxidation. Si also significantly increased the ratio of K+/Na+ in stem and leaves of G. uralensis. In conclusion, Si could alleviate adverse effects of salt stress probably by decreasing Na+ concentration and improving antioxidant enzyme activity of G. uralensis, and these alleviating effects were dependent on Si concentration and on Si processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sanchez-Blanco MJ, Hernández JA (2015) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242:829–846

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Zaheer SH, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci 85:43–50

    Article  CAS  Google Scholar 

  • Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Article  Google Scholar 

  • Ashraf M, Afzal M, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010a) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391

    Article  CAS  Google Scholar 

  • Ashraf M, Ahmad R, Bhatti AS, Afzal M, Sarwar A, Maqsood MA, Kanwal S (2010b) Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere 20:153–162

    Article  CAS  Google Scholar 

  • Barba-Espín G, Clemente-Moreno MJ, Alvarez S, García-Legaz MF, Hernandez JA, Díaz-Vivancos P (2011) Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biol 13:909–917

    Article  PubMed  Google Scholar 

  • Bradbury M, Ahmad R (1990) The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant Soil 125:71–74

    Article  CAS  Google Scholar 

  • Chen GD, Li YX, Zhang H, Chen J, Cai LY (2008) Effects of salt stress on growth and flavonoids content in different organs of two species of Epimedium. Acta Bot Boreal-Occident Sin 28:2047–2054

    CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  PubMed  Google Scholar 

  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Eneas J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize varieties. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Guerrier G (1996) Fluxes of Na+, K+ and Cl, and osmotic adjustment in Lycopersicon pimpinellifolium and L. esculentum during short- and long-term exposures to NaCl. Physiol Plant 97:583–591

    Article  CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Article  Google Scholar 

  • Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L. plants. Soil Sci Plant Nutr 56:244–253

    Article  CAS  Google Scholar 

  • Henriet C, Draye X, Oppitz I, Swenen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374

    Article  CAS  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun Soil Sci Plan 31:2763–2774

    Article  CAS  Google Scholar 

  • Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38:218–224

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee JJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340

    Article  Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Liang YC, Ding RX (2002) Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci China Ser C 45:298–308

    Article  CAS  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Modarresi M, Moranlan F, Nematzadeh GL (2014) Antioxidant responses of halophyte plant Aeluropus littoralis under long-term salinity stress. Biologia 69:478–483

    Article  CAS  Google Scholar 

  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol 8:293–297

    CAS  Google Scholar 

  • Ozaki K, Shibano M (2014) Aim for production of Glycyrrhizae Radix in Japan (3): development of a new licorice cultivar. J Nat Med 68:358–362

    Article  PubMed  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Muneebu-rehman Siddiqi TO, Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24

    Chapter  Google Scholar 

  • Rios-Gonzalez K, Erdei L, Lips SH (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162:923–930

    Article  CAS  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Jacquot JP (2008) Getting sick may help plants overcome abiotic stress. New Phytol 180:738–741

    Article  CAS  PubMed  Google Scholar 

  • Seckin B, Turkan I, Sekmen AH, Ozfidan C (2010) The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environ Exp Bot 69:76–85

    Article  CAS  Google Scholar 

  • Shu LZ, Liu YH (2001) Effects of silicon on growth of maize seedlings under salt stress. Agro-Environ Prot 20:38–40

    Google Scholar 

  • Soundararajan P, Manivannan A, Park YG, Muneer S, Jeong BR (2015) Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus ‘Tula’. Hortic Environ Biotechnol 56:233–239

    Article  CAS  Google Scholar 

  • Soylemezoglu G, Demr K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic-Amsterdam 123:240–246

    Article  CAS  Google Scholar 

  • Tang XM, Wang WQ, Yang Q, Liu CL (2008) Effect of NaCl treatment on growth, physiological index and content of effective composition of Glycyrrhiza uralensis. J Jilin Agric Univ 30:172–175 (in Chinese)

    CAS  Google Scholar 

  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189

    Article  CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Murillo-amador B, Demir Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    Article  CAS  Google Scholar 

  • Wan CY, Wang D, Hou JL, Wang WQ, Peng F (2011) Effects of NaCl stress on growth and antioxidant enzyme activities of Glycyrrhiza uralensis. Prog in Mod Biomed 11:1805–1809 (in Chinese)

    CAS  Google Scholar 

  • Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285

    Article  CAS  Google Scholar 

  • Wang HM, Xiao XR, Yang MY, Gao ZL, Zang J, Fu XM, Chen YH (2014) Effects of salt stress on antioxidant defense system in the root of Kandelia candel. Bot Stud 55:57–63

    Article  Google Scholar 

  • Yang XU, Li JM, Dong XU, Duan LS, Li ZH (2006) Effects of salt stress on growth and some physiological indexes in Glycyrrhiza uralensis Fisch seedlings. Acta Agric Boreali-Occident Sin 21:39–42 (in Chinese)

    Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayke N, Flowers JF (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Yin SS, Zhang Y, Gao WY, Wang J, Man SL, Liu H (2014) Effects of nitrogen source and phosphate concentration on biomass and metabolites in adventitious root culture of Glycyrrhiza uralesis Fisch. Acta Physiol Plant 36:915–921

    Article  CAS  Google Scholar 

  • Yu BJ, Luo QY, Liu YL (2010) Effects of salt stress on growth and ionic distribution of salt-born Glycine soja. Acta Agro Sin 27:776–780 (in Chinese)

    Google Scholar 

  • Zhang PY, Peng ZX (1960) Liquorice in Northwest of China. J Lanzhou Univ 1:57–87

    Google Scholar 

  • Zhang XH, Lang DY, Zhang EH, Bai CC, Wang HZ (2013) Diurnal changes in photosynthesis and antioxidants of Angelica sinensis as influenced by cropping systems. Photosynthetica 51:252–258

    Article  CAS  Google Scholar 

  • Zhang XH, Zhou D, Cui JJ, Ma HL, Lang DY, Wu XL, Wang ZS, Qiu HY, Li M (2015) Effect of silicon on seed germination and the physiological characteristics of Glycyrrhiza uralensis under different levels of salinity. J Hortic Sci Biotech 90:439–443

    Article  CAS  Google Scholar 

  • Zhu YX, Gong HJ (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 4:455–472

    Article  Google Scholar 

  • Zhu JK, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

  • Zushi K, Matsuzoe N, Kitano M (2009) Developmental and tissuespecific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Sci Hortic 122:362–368

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Project Nos. 31260304 and 31460330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Hui Zhang.

Additional information

Communicated by LA Kleczkowski.

Y.-T. Li and W.-J. Zhang contributed to the manuscript equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YT., Zhang, WJ., Cui, JJ. et al. Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress. Acta Physiol Plant 38, 96 (2016). https://doi.org/10.1007/s11738-016-2108-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2108-8

Keywords

Navigation