Skip to main content
Log in

Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The effects of silicon application before sowing on the drought-induced oxidative stress and antioxidant defense in wheat (Triticum aestivum L.) were investigated. Drought stress was applied by withholding watering till sampling at booting or filling stage. Application of Si increased the water potential of drought-stressed plants at filling stage, whereas it did not at booting stage. The superoxide dismutase (SOD) activity was inhibited and peroxidase (POD) activity was enhanced by drought at booting stage, and no differences were observed due to the Si treatment. At filling stage, however, application of Si increased the SOD activity and decreased the POD activity of drought-stressed plants. The catalase (CAT) activity was slightly increased by drought only in the absence of Si and at booting stage. The activity of glutathione reductase (GR) was not greatly influenced. Application of Si did not change the contents of H2O2, total soluble protein and protein carbonyl of drought-stressed plants at booting stage, whereas at filling stage, it decreased the content of H2O2 and protein carbonyl and increased the content of total soluble protein. The content of thiobarbituric acid reactive substances (TBARS) and the activities of acid phospholipase (AP) and lipoxygenase (LOX) in drought-stressed plants were also decreased by application of Si at both stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AP:

acid phospholipase

CAT:

catalase

GR:

glutathione reductase

LOX:

lipoxygenase

POD:

peroxidase

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid reactive substances

References

  • Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W., Kaufman, P.B.: Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage.-Plant Prod. Sci. 1: 96–103, 1998.

    Article  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak, I., Strbac, D., Marschner, H.: Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds.-J. exp. Bot. 44: 127–132, 1993.

    Article  CAS  Google Scholar 

  • Dhindsa, R.S., Dhindsa, P.P., Thorpe, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase.-J. exp. Bot. 32: 93–101, 1980.

    Article  Google Scholar 

  • Egert, M., Tevini, M.: Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum).-Environ. exp. Bot. 48: 43–49, 2002.

    Article  CAS  Google Scholar 

  • Elawad, S.H., Allen, L.H., Gascho, G.J.: Influence of UV-B radiation and soluble silicates on the growth and nutrient concentration of sugarcane.-Soil Crop Sci. Soc. Florida 44: 134–141, 1985.

    CAS  Google Scholar 

  • Epstein, E.: Silicon.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 641–664, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature.-Plant Physiol. 116: 571–580, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Gong, H., Chen, K., Chen, G., Wang, S., Zhang, C.: Effects of silicon on growth of wheat under drought.-J. Plant Nutr. 26: 1055–1063, 2003a.

    Article  CAS  Google Scholar 

  • Gong, H., Chen, K., Chen, G., Wang, S., Zhang, C.: Effects of silicon on the growth of wheat and its antioxidative enzymatic system.-Chin. J. Soil Sci. 34: 55–57, 2003b.

    CAS  Google Scholar 

  • Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C.: Silicon alleviates oxidative damage of wheat plants in pots under drought.-Plant Sci. 169: 313–321, 2005.

    Article  CAS  Google Scholar 

  • Gong, H.J., Randall, D.P., Flowers, T.J.: Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow.-Plant Cell Environ. 29: 1970–1979, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Gunes, A., Inal, A., Bagci, E.G., Coban, S., Pilbeam, D.J.: Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity.-Scientia Hort. 113: 113–119, 2007a.

    Article  CAS  Google Scholar 

  • Gunes, A., Inal, A., Bagci, E.G., Coban, S., Sahin, O.: Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron.-Biol. Plant. 51: 571–574, 2007b.

    Article  CAS  Google Scholar 

  • Gunes, A., Inal, A., Bagci, E.G., Pilbeam, D.J.: Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil.-Plant Soil 290: 103–114, 2007c.

    Article  CAS  Google Scholar 

  • Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxová, M., Lux, A.: Application of silicon enhanced drought tolerance in Sorghum bicolour.-Physiol. Plant. 123: 459–466, 2005.

    Article  CAS  Google Scholar 

  • Hattori, T., Lux, A., Tanimoto, E., Luxova, M., Sugimoto, Y., Inanaga, S.: The effect of silicon on the growth of sorghum under drought.-In: Morita, S. (ed.): The 6th Symposium of the International Society of Root Research. Pp. 348–349. Japanese Society for Root Research (JSRR), Nagoya 2001.

    Google Scholar 

  • Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., Eneji, A.E., Morita, S.: Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon.-Environ. exp. Bot. 60: 177–182, 2007.

    Article  CAS  Google Scholar 

  • Hodson, M.J., Sangster, A.G.: Silicon and abiotic stress.-In: Matoh, T. (ed.): Second Silicon in Agriculture Conference. Pp. 99–104. Press-Net, Tokyo 2002.

    Google Scholar 

  • Landry, L.G., Chapple, C.C.S., Last, R.L.: Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage.-Plant Physiol. 109: 1159–1166, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., Chen, Q., Liu, Q., Zhang, W., Ding, R.: Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.).-J. Plant Physiol. 160: 1157–1164, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., Sun, W., Zhu, Y.-G., Christie, P.: Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review.-Environ. Pollut. 147: 422–428, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., Zhang, W., Chen, Q., Liu, Y., Ding, R.: Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.).-Environ. exp. Bot. 57: 212–219, 2006.

    Article  CAS  Google Scholar 

  • Lynch, D.L., Thompson, J.E.: Lipoxygenase-mediated production of superoxide anion in senescing plant tissue.-FEBS Lett. 173: 251–254, 1994.

    Article  Google Scholar 

  • Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y., Yano, M.: A silicon transporter in rice.-Nature 440: 688–691, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.H., Zheng, H.L., Zhang, C.G., Li, X.Q., Lin, P.: Effects of salinity on protein, H2O2 content and lipid peroxidation in Kandelia candel and Aegiceras coniculatum seedlings.-J. Xiamen Univ. (Natur. Sci.) 41: 354–358, 2002.

    CAS  Google Scholar 

  • Ranganathan, S., Suvarchala, V., Rajesh, Y.B.R.D., Srinivasa Prasad, M., Padmakumari, A.P., Voleti, S.R.: Effect of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice.-Biol. Plant. 50: 713–716, 2006.

    Article  CAS  Google Scholar 

  • Rodrigues, F.Á., Vale, F.X.R., Korndörfer, G.H., Prabhu, A.S., Datnoff, L.E., Oliveira, A.M.A., Zambolim, L.: Influence of silicon on sheath blight of rice in Brazil.-Crop Protect. 22: 23–29, 2003.

    Article  CAS  Google Scholar 

  • Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants-protective role of exogenous polyamines.-Plant Sci. 151: 59–66, 2000.

    Article  CAS  Google Scholar 

  • Xu, S.C., Shen, X.Y., Gu, W.L., Dai, J.Y., Wang, L.Z.: Changes of lipid peroxidation, deasterification of phosphatide and ultrastructure of membrane in leaf cells of maize under soil drought condition.-Acta agron. sin. 20: 564–569, 1994.

    Google Scholar 

  • Zhu, Z., Wei, G., Li, J., Qian, Q., Yu, J.: Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.).-Plant Sci. 167: 527–533, 2004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, H.J., Chen, K.M., Zhao, Z.G. et al. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52, 592–596 (2008). https://doi.org/10.1007/s10535-008-0118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0118-0

Additional key words

Navigation