Skip to main content
Log in

Separation of Silicon from Coarse Al-Si Melts under Alternating Electromagnetic Field with Varying Frequencies

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The separation behaviour of primary silicon from high-silicon Al-Si melts during the directional solidification under alternating electromagnetic field with varying frequencies and pulling rates is investigated. Results show that the separation of Si from Al-Si melts significantly depends on the electromagnetic frequency and the solidification rate of the melts as well. Moreover, the separation and enrichment effects of Si electromagnetic frequency with 3 kHz was superior to 30 kHz during the electromagnetic separation process, which was independent on the initial concentration. The flat and distinct separation interfaces could be formatted by using a relatively low pulling rate of 5 μm/s and a frequency of 3 kHz. Finally, the differential scanning calorimetry analysis showed that the alloy section had good thermal stability in the whole electromagnetic separation process. This method has the prospect and potential of becoming the method for manufacturing low-cost Al-Si alloys after the electrothermal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang HY, Tian GH, Xiong YS (2008). Foundry 57:892–894

    CAS  Google Scholar 

  2. Yang D, Feng NX, Wang YW, Wu XL (2010) Trans. Nonferrous met. Soc. China 20:147–152

    Google Scholar 

  3. You J, Wang YW, Feng NX, Yang MS (2008). Trans Nonferrous Met Soc China 8(1):116–120

    Article  Google Scholar 

  4. Zou QC, Jie JC, Sun JL, Wang TM, Cao ZQ, Li TJ (2015). Sep Purif Technol 142:101–107

    Article  CAS  Google Scholar 

  5. H.L. Xiong, The master degree dissertation of HuaZhong University of science and technology, 2007. (in Chinese)

  6. Mazahery A, Shabani MO (2014). JOM 66(5):726–738

    Article  CAS  Google Scholar 

  7. Li JW, Guo ZC, Tang HQ (2012). Chin J Nonferrous Met 22(4):958–963

    Article  CAS  Google Scholar 

  8. Li JW, Guo ZC, Li JC (2014). Silicon 7(3):1–8

    CAS  Google Scholar 

  9. Bolzoni L, Hari Babu N (2016). JOM 68:1301–1306

    Article  CAS  Google Scholar 

  10. Gu X, Yu XG, Yang DR (2011). Sep Purif Technol 77(1):33–39

    Article  CAS  Google Scholar 

  11. Li X, Ren ZM, Fautrel Y (2009). Mater Lett 63(15):1235–1238

    Article  CAS  Google Scholar 

  12. Morita K, Miki T (2003). Intermetallics 11(11):1111–1117

    Article  CAS  Google Scholar 

  13. Yoshikawa T (2005). ISIJ Int 45(7):967–971

    Article  CAS  Google Scholar 

  14. Yoshikawa T, Morita K (2005) Metall. Mater. Trans. B 36(36):731–736

    Article  Google Scholar 

  15. Nishi Y, Kang Y, Morita K (2010) Mater. Trans 51:1227–1230

    CAS  Google Scholar 

  16. Liu T, Wang Q, Zhang HW, Lou CS, Nakajima K, He JC (2011). J Mater Sci 46:1628–1634

    Article  CAS  Google Scholar 

  17. Wang Q, Wang CJ, Liu T, Wang H, He JC (2007). J Mater Sci 42:10000–10006

    Article  CAS  Google Scholar 

  18. Lei Y, Sun LE, Ma WH, Wei KX, Morita K (2016). J Alloy Compd 666:406–411

    Article  CAS  Google Scholar 

  19. Li JY, Ni P, Wang L, Tan Y (2017). Mat Sci Semicon Proc 61:79–84

    Article  CAS  Google Scholar 

  20. Ban BY, Zhang TT, Li JW, Bai XL, Pan X, Chen J, Tabaianc SH (2018). Sep Purif Technol 202(8):266–274

    Article  CAS  Google Scholar 

  21. Na XZ, Xue M, Zhang XZ, Gan Y (2007). J Iron Steel Res Int 14(6):14–21

    Article  CAS  Google Scholar 

  22. Ma XD, Lei Y, Yoshikawa T, Zhao BJ, Morita K (2015). J Cryst Growth 430:98–102

    Article  CAS  Google Scholar 

  23. Yu WZ, Ma WH, Zheng Z, Lei Y, Jing WY, Li J (2017) Metall. Mater Trans B 48:2804–2811

    Article  CAS  Google Scholar 

  24. Yu WZ, Xue Y, Mei J, Zhou XZ, Xiong ML, Zhang SF (2019). J Alloy Comp 805:198–204

    Article  CAS  Google Scholar 

  25. Lv GQ, Bao Y, Zhang YF, He YF, Ma WH, Lei Y (2018). Mat. Sci. Semicon. Proc 81:139–148

    Article  CAS  Google Scholar 

  26. D.T. Chen, The master degree dissertation of Kunming: Kunming University of Science and Technology, 2016. (in Chinese)

  27. Ding Z, Wu P, Shaw L (2019). J. Alloy. Comp. 806:350–360

    Article  CAS  Google Scholar 

  28. Ding Z, Wu P, Shaw L (2019). Energy Storage Mat 20:24–35

    Article  Google Scholar 

  29. Cai ZY, Wang RC, Zhang C, Peng CQ, Xie LC (2015) Trans. Nonferrous met. Soc. China 3:618–625

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support by National Natural Science Foundation of China (No.51466005, 51864031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqiang Lv or Wenhui Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chang, Y., Lv, G. et al. Separation of Silicon from Coarse Al-Si Melts under Alternating Electromagnetic Field with Varying Frequencies. Silicon 12, 2851–2860 (2020). https://doi.org/10.1007/s12633-020-00375-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00375-8

Keywords

Navigation