Skip to main content
Log in

Effect of pull-down rate and power on electromagnetic separation of hypereutectic Ti–Si alloy under vacuum

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, numerical and experimental methods were used to investigate the effects of the process parameters on the enrichment of primary Si by separation of hypereutectic Ti-89 wt.% Si alloy melts during directional solidification. The results indicated that the separation of the primary Si from Ti-89 wt% Si alloy melts significantly depends on the pull-down rate of the melts, and the flow velocity of the melts decreases as the pull-down rate increases, which reduces the separation and enrichment effects of the primary Si during the electromagnetic directional solidification process. Conversely, with the increase in power, the convection and heat transfer of the melt are enhanced, which promotes the separation and enrichment of primary Si. Furthermore, the enrichment of silicon was analyzed by ICP (Inductive coupled plasma emission spectrometer), and it was found that with the power increasing from 3.8 to 5.4 kW, the content of Ti in the silicon enrichment layer decreased from 4.16 to 2.08%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Li C, Liang B, Guo LH, Wu ZB (2006) Effect of mechanical activation on the dissolution of Panzhihua ilmenite. Miner Eng 19:1430–1438. https://doi.org/10.1016/j.mineng.2006.02.005

    Article  CAS  Google Scholar 

  2. Zhen YL, Zhang GH, Chou KC (2016) Carbothermic reduction of titanium-bearing blast furnace slag. High Temp Mater Process 35:309–319. https://doi.org/10.1515/htmp-2014-0159

    Article  CAS  Google Scholar 

  3. Zhen YL, Zhang GH, Chou KC (2016) Mechanism and kinetics of the carbothermic reduction of titanium-bearing blast furnace slag. Metal Res Technol 113:507–516. https://doi.org/10.1051/metal/2016039

    Article  CAS  Google Scholar 

  4. Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT (2006) Dynamic oxidation of the Ti-bearing blast furnace slag. ISIJ Int 46:458–465. https://doi.org/10.2355/isijinternational.46.458

    Article  CAS  Google Scholar 

  5. Wang MY, Zhang LN, Zhang L, Sui ZT, Tu GF (2006) Selective enrichment of TiO2 and precipitation behavior of perovskite phase in titania bearing slag. Nonferrous Met Soc China Trans 16:421–425. https://doi.org/10.1016/S1003-6326(06)60072-1

    Article  Google Scholar 

  6. Ren QD, Hao SJ, Jiang WF, Zhang YZ, Zhang WP (2014) Study of comprehensive utilization on Ti-bearing blast furnace Slag. Appl Mech Mater 488:141–144. https://doi.org/10.4028/www.scientific.net/AMM.488-489.141

    Article  CAS  Google Scholar 

  7. Liu XH, Sui ZT (2002) Leaching of Ti-bearing blast furnace slag by pressuring. Trans Nonferrous Met Soc China 12:1281–1284. https://doi.org/10.19476/j.ysxb.1004.0609.2002.06.038

    Article  CAS  Google Scholar 

  8. Tong QJ, Qi T, Liu YM, Wang LN, Zhang Y (2007) Preparation of potassium titanate whiskers and titanium dioxide from titaniferrous slag using KOH sub-molten salt method. Chin J Process Eng 7:85–89. https://doi.org/10.3321/j.issn:1009-606X.2007.01.018

    Article  CAS  Google Scholar 

  9. Zhu KS, Ma WH, Wei KX, Lei Y, Hu JF, Lv TL, Dai YN (2018) Separation mechanism of TiSi2 crystals from a Ti–Si eutectic alloy via directional solidification. J Alloys Compd 750:102–110. https://doi.org/10.1016/j.jallcom.2018.02.161

    Article  CAS  Google Scholar 

  10. Zhu KS, Hu JF, Ma WH, Wei KX, Lv TL, Dai YN (2019) Effects of solidification parameters and magnetic field on separation of primary silicon from hypereutectic Ti-85 wt% Si melt. J Cryst Growth 522:78–85. https://doi.org/10.1016/j.jcrysgro.2019.05.012

    Article  CAS  Google Scholar 

  11. Yu QH, Liu LJ, Li ZY, Shao Y (2018) Parameter study of traveling magnetic field for control of melt convection in directional solidification of crystalline silicon ingots. Int J Heat Fluid Flow 71:55–67. https://doi.org/10.1016/j.ijheatfluidflow.2018.03.007

    Article  Google Scholar 

  12. Yang JR, Chen RR, Ding HS, Su YQ, Huang F, Guo JJ, Fu HZ (2012) Numerical calculation of flow field inside TiAl melt during rectangular cold crucible directional solidification. Trans Nonferrous Met Soc China 22:157–163. https://doi.org/10.1016/S1003-6326(11)61155-2

    Article  CAS  Google Scholar 

  13. Yang JR, Chen RR, Ding HS, Guo JJ, Su YQ, Fu HZ (2014) Flow field and its effect on microstructure in cold crucible directional solidification of Nb containing TiAl alloy. J Mater Process Technol 213:1355–1363. https://doi.org/10.1016/j.jmatprotec.2013.04.006

    Article  Google Scholar 

  14. Yang X, Ma WH, Lv GQ, Wei KX, Luo T, Chen DT (2014) A modified vacuum directional solidification system of multicrystalline silicon based on optimizing for heat transfer. J Cryst Growth 400:7–14. https://doi.org/10.1016/j.jcrysgro.2014.04.025

    Article  CAS  Google Scholar 

  15. Yu WZ, Ma WH, Lv GQ, Xue HY, Li SY, Dai YN (2014) Effect of electromagnetic stirring on the enrichment of primary silicon from Al–Si melt. J Cryst Growth 405:23–28. https://doi.org/10.1016/j.jcrysgro.2014.07.035

    Article  CAS  Google Scholar 

  16. Lv GQ, Bao Y, Zhang YF, He YF, Ma WH, Lei Y (2018) Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al–Si alloy with high Si content. Mater Sci Semicond Process 81:139–148. https://doi.org/10.1016/j.mssp.2018.03.006

    Article  CAS  Google Scholar 

  17. Liu YC, Roux B, Lan CW (2007) Effects of accelerated crucible rotation on segregation and interface morphology for vertical bridgman crystal growth: visualization and simulation. J Cryst Growth 304:236–243. https://doi.org/10.1016/j.jcrysgro.2007.01.046

    Article  CAS  Google Scholar 

  18. Bellmann MP, Meese EA (2011) Effect of steady crucible rotation on the segregation of impurities in vertical bridgman growth of multi-crystalline silicon. J Cryst Growth 333:1–6. https://doi.org/10.1016/j.jcrysgro.2011.08.004

    Article  CAS  Google Scholar 

  19. Yang X, Lv GQ, Ma WH, Xue HY, Chen DT (2016) The effect of radiative heat transfer characteristics on vacuum directional solidification process of multicrystalline silicon in the vertical bridgman system. Appl Therm Eng 93:731–741. https://doi.org/10.1016/j.applthermaleng.2015.10.073

    Article  Google Scholar 

  20. Duo WC, Yang X, He YF, Li QJ, Wei KX, Lv GQ, Ma WH (2020) Effect of marangoni convection on ingot quality during vacuum directional solidification of polycrystalline silicon. J Vac Sci Technol 41:515–523. https://doi.org/10.13922/j.cnki.cjvst.202011019

    Article  CAS  Google Scholar 

  21. Lv GQ, Yang Y, Liu C, Ma WH, Chen DT, Jiang PY (2015) Effects of heat exchange condition on growth interface and thermal stress of polysilicon in vacuum direction solidification process. Trans Mater Heat Treat 36:231–236. https://doi.org/10.13289/j.issn.1009-6264.20150505.001

    Article  Google Scholar 

  22. Abricka M, Gelfgat Y, Krumins J (2002) Influence of combined electromagnetic fields on the heat/mass transfer in the bridgman process. Energy Convers Manage 43:327–333. https://doi.org/10.1016/S0196-8904(01)00106-6

    Article  CAS  Google Scholar 

  23. Umbrashko A, Baake E, Nacke B, Jakovics A (2006) Modeling of the turbulent flow in induction furnaces. Met Mater Trans B 37:831–838. https://doi.org/10.1007/s11663-006-0065-0

    Article  Google Scholar 

  24. Morita K, Yoshikawa T (2011) Thermodynamic evaluation of new metallurgical refining processes for SOG–silicon production. Trans Nonferrous Met Soc China 21:685–690. https://doi.org/10.1016/S1003-6326(11)60766-8

    Article  CAS  Google Scholar 

  25. Li PT, Ren SQ, Jiang DC, Li JY, Zhang L, Tan Y (2016) Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification. J Cryst Growth 437:14–19. https://doi.org/10.1016/j.jcrysgro.2015.12.007

    Article  CAS  Google Scholar 

  26. Wang PP, Lu HM, Lai YS (2014) Control of silicon solidification and the impurities from an Al–Si melt. J Cryst Growth 390:96–100. https://doi.org/10.1016/j.jcrysgro.2013.12.024

    Article  CAS  Google Scholar 

  27. Zhu KS, Hu JF, Ma WH, Wei KX, Lv TL, Dai YN (2019) Effects of solidification parameters and magnetic field on separation of primary Si from hypereutectic Ti-85 wt% Si melt. J Cryst Growth 522:78–95. https://doi.org/10.1016/j.jcrysgro.2019.05.012

    Article  CAS  Google Scholar 

  28. Yoshikawa T, Morita K (2008) Refining of silicon during its solidification from a Si–Al melt. J Cryst Growth 311:776–779. https://doi.org/10.1016/j.jcrysgro.2008.09.095

    Article  CAS  Google Scholar 

  29. Hu JF (2020) Fundamental research on removal of metal impurities during electromagnetic directional solidification of titanium–silicon alloy. MD Diss Kunming Univ Sci Technol

Download references

Acknowledgements

The authors are grateful to the financial support by National Natural Science Foundation of China (No. 5186403 and U1702251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, J., Zhu, K. et al. Effect of pull-down rate and power on electromagnetic separation of hypereutectic Ti–Si alloy under vacuum. J Mater Sci 58, 397–410 (2023). https://doi.org/10.1007/s10853-022-07993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07993-0

Navigation