Skip to main content
Log in

Control of solidified structures in aluminum–silicon alloys by high magnetic fields

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to investigate the effects of high magnetic fields on the as-solidified structures of Al alloys, solidification experiments of hypoeutectic and hypereutectic Al–Si alloys under various high magnetic field conditions (up to 12 T) have been conducted. It was found that uniform magnetic fields and gradient magnetic fields affect the solidification process by Lorentz force and magnetization force, respectively. The primary silicon crystals of hypereutectic Al–Si alloys are distributed, relatively, homogeneously under uniform magnetic fields, whereas they congregate near the top surface or bottom of samples by the combined action of buoyancy and magnetization force under gradient magnetic fields. The results indicate that it is possible to control the behaviors of reinforced particles in the metal matrix and improve the material performances by using high magnetic fields in the solidification process of metal matrix composites. The experiments also showed that high magnetic fields decrease the interlamellar spacing of the eutectic structure, while there exists a certain optimum value of magnetic intensity corresponding to the minimum value of interlamellar spacing, and magnetic energy is capable of influencing thermodynamic equilibrium of solidifying system and makes the content of eutectic aluminum in eutectic structures increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asai S (2003) In: Asai S, Fautrelle Y, Gillon P, Durand F (eds) Proceedings of the 4th International Conference on Electromagnetic Processing of Materials, Lyon, The Company Forum Edition, Lyon, p 1

  2. Asai S (2000) Sci Technol Adv Mater 1:191

    Article  CAS  Google Scholar 

  3. Jones TB (1979) J Appl Phys 50:5057

    Article  Google Scholar 

  4. Garcia A, Moron C, Maganto F (2003) Sensor Actuat A-Phys 106:108

    Article  CAS  Google Scholar 

  5. Negrini F, Fabbri M, Zuccarini M, Takeuchi E (2000) Energy Convers Manage 41:1687

    Article  CAS  Google Scholar 

  6. Asai S (2004) Model Simul Mater Sci Eng 12:R1

    Article  CAS  Google Scholar 

  7. Asai S, Sassa K, Tahashi M (2003) Sci Technol Adv Mater 4:455

    Article  CAS  Google Scholar 

  8. Schneider-Muntau HJ, Brandt BL, Brunel LC, Cross TA, Edison AS, Marshall AG, Reyes AP (2004) Physica B 346–347:643

    Article  Google Scholar 

  9. Perenboom JAAJ, Wiegers SAJ, Christianen PCM, Zeitler U, Maan JC (2004) Physica B 346–347:659

    Article  Google Scholar 

  10. Kang JY, Tozawa S (1996) Acta Phys Sin 45:324

    CAS  Google Scholar 

  11. Wang Q, Wang CJ, Wang EG, He JC (2005) Acta Metall Sin (in Chinese) 41:128

    Google Scholar 

  12. Wang H, Ren ZM, Deng K, Xu KD (2002) Acta Metall Sin (in Chinese) 38:41

    Google Scholar 

  13. Morikawa H, Sassa K, Asai S (1998) Mater Trans JIM 39:814

    Article  CAS  Google Scholar 

  14. Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K (2003) In: Asai S, Fautrelle Y, Gillon P, Durand F (eds) Proceedings of the 4th International Conference on Electromagnetic Processing of Materials, Lyon, The Company Forum Edition, Lyon, p 459

  15. Nakada M, Mori K, Nishioka S, Tsutsimi H (1997) ISIJ Int 37:358

    Article  CAS  Google Scholar 

  16. Yasuda H, Ohnaka I, Kawakami O, Ueno K, Kishio K (2003) ISIJ Int 43:942

    Article  CAS  Google Scholar 

  17. Wang Q, Wang EG, He JC, Hu K, Takahashi K, Watanabe K (2003) In Asai S, Fautrelle Y, Gillon P, Durand F (eds) Proceedings of the 4th International Conference on Electromagnetic Processing of Materials, Lyon, The Company Forum Edition, Lyon, p 464

  18. Wang Q, Wang CJ, Pang XJ, He JC (2004) Chinese J Mater Res (in Chinese) 18:568

    CAS  Google Scholar 

  19. Ikezoe Y, Kaihatsu T, Uetake H, Hirota N, Nakagawa J, Kitazana K (2000) Trans Mater Res Soc Jpn 25:77

    CAS  Google Scholar 

  20. Robert C (1982–1983) In: CRC Handbook of Chemistry and Physics (the 63rd edition), CRC Press, Inc., Florida, p B-244

  21. The Japan Institute of Metals (1993) In: Data handbook of metals (the Third Edition, in Japanese), Maruzen Co. Ltd, Shizuoka, p 18

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 50374027), the Program for New Century Excellent Talents in University (Grant No. NCET-06-0289) and the 111 project (Grant No. B07015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Wang, Cj., Liu, T. et al. Control of solidified structures in aluminum–silicon alloys by high magnetic fields. J Mater Sci 42, 10000–10006 (2007). https://doi.org/10.1007/s10853-007-2050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2050-7

Keywords

Navigation