Skip to main content

Advertisement

Log in

High Temperature Crystallization Process of a-Si Thin-films on Aluminum Nitride Substrates

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Crystallization of silicon (Si) from amorphous silicon (a-Si) on foreign substrates has been studied by various research institutes. Crystallization of silicon thin-films on foreign substrates acts as an active layer in silicon thinfilm solar cells. In this research, due to the compatibility of thermal stability and expansion coefficient with Si, we used an aluminum nitride (AIN) substrate as an alternative candidate to glass and other ceramic substrates. P-type amorphous Si 5 μm thin-film was deposited using an ebeam evaporator directly on AIN substrates. The deposited layer was annealed at high temperature (°C) with N2 environment in a conventional tube furnace. Optical characterization was done using an optical microscope to investigate the surface morphology of as-grown and annealed samples. A smoother surface with an average grain size of about 3–4 μm was formed after annealing. Reflectance parameters were measured by UV-vis spectrometry. UV-vis-NIR was studied on as-grown and annealed samples to calculate the quality factor of the Si thin-film which was about 84.4 %. X-ray diffraction (XRD) was used to determine the phase direction of the Si thin-film before and after thermal annealing. It was observed that FWHM varied from 7.73 to 9.30 cm−1, Raman shift was from 520 to 522 cm−1, and the stressed level also changed from 180 to 540 Mpa after annealing at high temperature for a long time. Interestingly, a crystallinity fraction was achieved of about 90 % at 1100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slaoui A, Poortmans J, Bourdais S, Beaucarne G (2004) Appl Phys A Mater Sci Process 79:469

    Article  Google Scholar 

  2. Hirshman WP, faidas M, Finis AL, Jin Y, Knoll B, Li R (2009) Phot Int 3:170

    Google Scholar 

  3. Aberle A (2006). In: Proceedings of the IEEE 4th world conference photovoltaic energy conference, HI, p 1481

  4. Beaucarne G (2007) Adv Optoelectron 2007:1

    Article  Google Scholar 

  5. Bo X-Z, Yao N, Shieh SR, Duffy TS, Sturm JC (2002) J Appl Phys 91:2910

    Article  CAS  Google Scholar 

  6. Vavrunkova V, Netrvalova M, Prusakova L, Mullerova J, Sutta P (2010). In: 2010 27th international conference on microelectronics, Aleksan Nis, p 257

  7. Takahashi T, Hayashi Y, Ishii K, Nishikawa H (1993) Jpn J Appl Phys 32:770

    Google Scholar 

  8. Jun S-I, Rack PD, McKnight TE, Melechko AV, Simpson ML (2006) Appl Phys Lett 89:022104

    Article  Google Scholar 

  9. Sontheimer T, Becker C, Bloeck U, Gall S, Rech B (2009) Appl Phys Lett 95:101902

    Article  Google Scholar 

  10. Falk F, Ose E, Sarau G (2009). In: 24th European photovoltaic solar energy conference, Hamburg, p 2341

  11. Netrvalov M, Vavrǔ V (2009) J Electr Eng 60:279

    Google Scholar 

  12. Aberle AG (2006) J Cryst Growt 287:386

    Article  CAS  Google Scholar 

  13. Schmidt T, Gawlik A, Schneidewind H, Ihring A, Andrä G, Falk F (2013) Opt Expres 21:16296

    Article  Google Scholar 

  14. Bordo K, Rubahn H (2012) Mater Sci 18

  15. Gordon I, Van Gestel D, Van Nieuwenhuysen K, Carnel L, Beaucarne G, Poortmans J (2005) Thi Sol Film 487:113

    Article  CAS  Google Scholar 

  16. Slaoui A, Pihan E, Focsa A (2006) Sol Energy Mater Sol Cell 90:1542

    Article  CAS  Google Scholar 

  17. Li D, Wittmann S, Kunz T, Ahmad T, Gawehns N, Hessmann MT, Auer R, Brabec CJ (2014). In: 29th european photovoltaic solar energy conference and exhibition, Amsterdam , p 1610

  18. Guckel H, Burns DW, Visser CCG, Tilmans HaC, Deroo D (1988) IEEE Trans Electr Devic 35:800

    Article  CAS  Google Scholar 

  19. French PJ, Member A, Van Drieenhuizen BP, Member S, Poenar D, Goosen JFL, Malliie R, Sarro PM, Wolffenbuttel RF (1996) J Microelectromech Syst 5:187

    Article  CAS  Google Scholar 

  20. Weinreich W, Acker J, Gräber I (2006) Semicond Sci Technol 21:1278

    Article  CAS  Google Scholar 

  21. Liu C-W, Cheng C-L, Dai B-T, Yang C-H, Wang J-Y (2012) Int J Photoener 2012:1

    Google Scholar 

  22. Prathap P, Slaoui A, Ducros C, Baclet N, Reydet PL (2009) Appl Phys A 97:45

    Article  CAS  Google Scholar 

  23. Kim DY, Ko JK, Park JH, Gangopadhyay U, Yi J (2003) Solid State Phenom 93:219

    Article  CAS  Google Scholar 

  24. Teixeira RC, Doi I, Zakia MBP, Diniz JA, Swart JW (2004) Mater Sci Eng B 112:160

    Article  Google Scholar 

  25. Ren N, Liu Z, Wang Q (2015) Phys Lett A 379:1153

    Article  CAS  Google Scholar 

  26. Tüzün Ö, Slaoui A, Roques S, Focsa A, Jomard F, Ballutaud D (2009) Thi Sol Film 517:6358

    Article  Google Scholar 

  27. Trung TQ, Jiri S, Stuchlikova H, Binh LK, Dinh NN, Khuong HK, Quynh PTN, Nga NTH (2009) J Phys Conf Ser 187 :012035

    Article  Google Scholar 

  28. Droz C, Vallat-Sauvain E, Bailat J, Feitknecht L, Meier J, Shah A (2004) Sol Energy Mater Sol Cel 81:61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhopal, M.F., Lee, D., Rehman, A.u. et al. High Temperature Crystallization Process of a-Si Thin-films on Aluminum Nitride Substrates. Silicon 10, 171–175 (2018). https://doi.org/10.1007/s12633-015-9369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9369-5

Keywords

Navigation