Skip to main content
Log in

Development of polycrystalline silicon films on flexible metallic substrates by aluminium induced crystallization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin film silicon solar cells on low cost foreign substrates could be attractive for highly efficient and low cost production of photovoltaic electricity. An attempt has been made to synthesise high-quality continuous polycrystalline silicon (pc-Si) layers on flexible metallic substrates using aluminium induced crystallization (AIC) for the first time. Amorphous silicon films deposited by ECR-PECVD were crystallized on diffusion barrier coated metallic substrates at lower temperatures (<577°C). The crystallization was studied using Raman as well as UV reflectance spectroscopy. The as-grown AIC pc-Si films were found to be continuous and densely packed without amorphous phase. The migration of impurities from the substrate to the pc-Si films and the conformability of the barrier layer with the substrate and pc-Si films were studied systematically in terms of chemical and stress level analysis, which are the important aspects to be considered when metallic foils are used as substrates. It was observed that the barrier layer also serves as a buffer layer to minimise the stress level enormously in the AIC grown pc-Si layer, though the supporting material has a thermal expansion coefficient of higher order at higher annealing temperatures. The present investigation proves the possibility to grow better-quality polycrystalline silicon films on flexible metallic foils and further demonstrates the steps that need to be considered to improve the quality of AIC pc-Si films as well as the strength of the barrier layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Slaoui, E. Pihan, M. Rusu, in 17th European Photovoltaic Solar Energy Conference (2001), p. 1462

  2. O. Tuzun, A. Slaoui, S. Roques, A. Focsa, F. Jomard, D. Ballutaud, Thin Solid Films (2009). doi:10.1016/j.tsf.2009.02.091

    Google Scholar 

  3. A. Focsa, I. Gordon, G. Beaucarne, O. Tuzun, A. Slaoui, J. Poortmans, Thin Solid Films 516, 6896 (2008)

    Article  ADS  Google Scholar 

  4. T. Toyama, R. Muhida, T. Harano, T. Sugano, M. Okajima, H. Okamoto, Jpn. Appl. Phys. 42, L1347 (2003)

    Article  ADS  Google Scholar 

  5. R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, Jpn. J. Appl. Phys. 45, 4340 (2006)

    Article  ADS  Google Scholar 

  6. H. Kirimura, Y. Uraoka, T. Fuyuki, M. Okuda, I. Yamashita, Appl. Phys. Lett. 86, 262106–1 (2005)

    Article  ADS  Google Scholar 

  7. O. Tuzun, J.M. Auger, I. Gordon, A. Focsa, P.C. Montgomery, C. Maurice, A. Slaoui, G. Beaucarne, J. Poortmans, Thin Solid Films 516, 6882 (2008)

    Article  ADS  Google Scholar 

  8. S. Gall, J. Schneider, J. Klein, K. Hubener, M. Muske, B. Rau, E. Conrad, I. Sieber, K. Petter, K. Lips, M. Stoger-Pollach, P. Schattschneider, W. Fuhs, Thin Solid Films 511–512, 7 (2006)

    Article  Google Scholar 

  9. O. Nast, S. Brehme, S. Pritchard, A.G. Aberle, S.R. Wenham, Sol. Energy Mater. Sol. Cells 65, 385 (2001)

    Article  Google Scholar 

  10. S. Guha, J. Yang, A. Banerjee, T. Glatfelter, G.J. Vendura Jr., A. Garcia, M. Kruer, in Proc., 2nd World Conference on Photovoltaic Solar Energy Conversion, vol. III, Vienna, Austria (1998), p. 3609

  11. G. Kaltsas, A.G. Nassiopoulos, M. Siakavellas, E. Anastassakis, Sens. Actuators A 68, 429 (1998)

    Article  Google Scholar 

  12. T.L. Alford, P.K. Shetty, N.D. Theodore, N. Tile, D. Adams, J.W. Mayer, Thin Solid Films 516, 3940 (2008)

    Article  ADS  Google Scholar 

  13. J.Y. Wang, D. He, Y.H. Zhao, E.J. Mittemeijer, Appl. Phys. Lett. 88, 061910–1 (2006)

    Article  ADS  Google Scholar 

  14. P. Widenborg, A.G. Aberle, J. Cryst. Growth 242, 270–282 (2004)

    Article  Google Scholar 

  15. J.D. Robson, Acta Mater. 52, 4669 (2004)

    Article  Google Scholar 

  16. G. Yu, Y.K.L. Lai, W. Zhang, J. Appl. Phys. 82, 4270 (1997)

    Article  ADS  Google Scholar 

  17. O. Nast, S.R. Wenham, J. Appl. Phys. 88, 124 (2000)

    Article  ADS  Google Scholar 

  18. O. Nast, T. Puzzer, L.M. Koschier, A.B. Sproul, S.R. Wenham, Appl. Phys. Lett. 73, 3214 (1998)

    Article  ADS  Google Scholar 

  19. E. Pihan, A. Slaoui, C. Maurice, J. Cryst. Growth 305, 88 (2007)

    Article  ADS  Google Scholar 

  20. G. Harbeke, Polycrystalline Semiconductors. Springer Series in Solid-State Science, vol. 57 (Springer, Berlin, 1985), p. 156

    Google Scholar 

  21. A. Straub, P.I. Widenborg, A. Sproul, Y. Huang, N. Harder, A.G. Aberle, J. Cryst. Growth 265, 168 (2004)

    Article  ADS  Google Scholar 

  22. A. Daunois, D.E. Aspnes, Phys. Rev. B 18, 1824 (1978)

    Article  ADS  Google Scholar 

  23. P. Lautenschlager, M. Garriga, L. Vina, M. Cardona, Phys. Rev. B 36, 4821 (1987)

    Article  ADS  Google Scholar 

  24. A. Borghesi, M.W. Giardini, M. Marazzi, A. Sassella, G. De Santi, Appl. Phys. Lett. 70, 892 (1997)

    Article  ADS  Google Scholar 

  25. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985), pp. 547–569

    Google Scholar 

  26. O. Nast, A.J. Hartmann, J. Appl. Phys. 88, 716 (2000)

    Article  ADS  Google Scholar 

  27. W. Fuhs, S. Gall, B. Rau, M. Schmidt, J. Schneider, Sol. Energy 77, 961 (2004)

    Article  Google Scholar 

  28. V. Paillard, P. Puech, M.A. Laguna, P. Temple-Boyer, B. de Mauduit, Appl. Phys. Lett. 73, 1718 (1998)

    Article  ADS  Google Scholar 

  29. P. Lengsfeld, N.H. Nickel, J. Non-Cryst. Solids 299–302, 778 (2002)

    Article  Google Scholar 

  30. K. Kitahara, A. Moritani, A. Hara, M. Okabe, Jpn. J. Appl. Phys. 38, L1312 (1999)

    Article  ADS  Google Scholar 

  31. G. Ekanayake, H.S. Reehal, Vacuum 81, 272 (2006)

    Article  Google Scholar 

  32. P. Joubert, B. Loisel, Y. Chouan, L. Haji, J. Electrochem. Soc. 134, 2541 (1987)

    Article  Google Scholar 

  33. H. Kim, D. Kim, G. Lee, D. Kim, S.H. Lee, Sol. Energy Mater. Sol. Cells 74, 323 (2002)

    Article  Google Scholar 

  34. V. Grigorov, O. Angelov, M. Sendova-Vassileva, D. Dimova-Malinovska, Thin Solid Films 511–512, 381 (2006)

    Article  Google Scholar 

  35. M.S. Haque, H.A. Naseem, W.D. Brown, J. Appl. Phys. 79, 7529 (1996)

    Article  ADS  Google Scholar 

  36. Y.G. Shen, Y. Mai, Mater. Sci. Eng. B 95, 222 (2002)

    Article  Google Scholar 

  37. K. Holloway, P.M. Fryer, C. Cabral Jr., J.M.E. Harper, P.J. Bailey, K.H. Kelleher J. Appl. Phys. 71, 5433 (1992)

    Article  ADS  Google Scholar 

  38. W.J. Shen, J. Wang, Q.Y. Wang, Y. Duan, Y.P. Zeng, J. Phys. D, Appl. Phys. 39, 269 (2006)

    Article  ADS  Google Scholar 

  39. S.J. Park, S.H. Kang, Y.M. Ku, J. Jang, Eur. Phys. J. Appl. Phys. 31, 165 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prathap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prathap, P., Slaoui, A., Ducros, C. et al. Development of polycrystalline silicon films on flexible metallic substrates by aluminium induced crystallization. Appl. Phys. A 97, 45–54 (2009). https://doi.org/10.1007/s00339-009-5331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5331-y

PACS

Navigation