Skip to main content
Log in

FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride (MgH2) was investigated for the first time in this paper. Experimental results demonstrated that 9wt% FeCoNiCrMo doped MgH2 started to de-hydrogenate at 200°C and discharged up to 5.89wt% hydrogen within 60 min at 325°C. The fully dehydrogenated composite could absorb 3.23wt% hydrogen in 50 min at a temperature as low as 100°C. The calculated de/hydrogenation activation energy values decreased by 44.21%/55.22% compared with MgH2, respectively. Moreover, the composite’s hydrogen capacity dropped only 0.28wt% after 20 cycles, demonstrating remarkable cycling stability. The microstructure analysis verified that the five elements, Fe, Co, Ni, Cr, and Mo, remained stable in the form of high entropy alloy during the cycling process, and synergistically serving as a catalytic union to boost the de/hydrogenation reactions of MgH2. Besides, the FeCoNiCrMo nanosheets had close contact with MgH2, providing numerous non-homogeneous activation sites and diffusion channels for the rapid transfer of hydrogen, thus obtaining a superior catalytic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.Z. Wang, X.J. Cao, and L.F. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production, eScience, 1(2021), No. 1, p. 69.

    Article  Google Scholar 

  2. M.C. Song, L.T. Zhang, F.Y. Wu, et al., Recent advances of magnesium hydride as an energy storage material, J. Mater. Sci. Technol., 149(2023), p. 99.

    Article  Google Scholar 

  3. Z.Q. Lan, H.R. Liang, X.B. Wen, et al., Experimental and theoretical studies on two-dimensional vanadium carbide hybrid nanomaterials derived from V4AlC3 as excellent catalyst for MgH2, J. Magnes. Alloys, (2022). https://doi.org/10.1016/j.jma.2022.09.019

  4. Y.X. Jia, X.C. Wang, L.J. Hu, et al., Carbon composite support improving catalytic effect of NbC nanoparticles on the low-temperature hydrogen storage performance of MgH2, J. Mater. Sci. Technol., 150(2023), p. 65.

    Article  Google Scholar 

  5. L. Zang, W.Y. Sun, S. Liu, et al., Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2, ACS Appl. Mater. Interfaces, 10(2018), No. 23, p. 19598.

    Article  CAS  Google Scholar 

  6. N.A. Sazelee and M. Ismail, Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: A review, Int. J. Hydrogen Energy, 46(2021), No. 13, p. 9123.

    Article  CAS  Google Scholar 

  7. T. Wang and K.F. Aguey-Zinsou, Controlling the growth of NaBH4 nanoparticles for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 3, p. 2054.

    Article  CAS  Google Scholar 

  8. Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, and Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J. Magnes. Alloys, 7(2019), No. 1, p. 58.

    Article  CAS  Google Scholar 

  9. Q. Luo, Y.L. Guo, B. Liu, et al., Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review, J. Mater. Sci. Technol., 44(2020), p. 171.

    Article  CAS  Google Scholar 

  10. S. Guemou, D.Q. Gao, F.Y. Wu, et al., Enhanced hydrogen storage kinetics of MgH2 by the synergistic effect of Mn3O4/ZrO2 nanoparticles, Dalton Trans., 52(2023), No. 3, p. 609.

    Article  CAS  Google Scholar 

  11. S.M. Zhou, D. Wei, H.Y. Wan, et al., Efficient catalytic effect of the page-like MnCo2O4.5 catalyst on the hydrogen storage performance of MgH2, Inorg. Chem. Front., 9(2022), No. 21, p. 5495.

    Article  CAS  Google Scholar 

  12. X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater. Today Nano, 9(2020), art. No. 100064.

  13. Z. Ding, Y.T. Li, H. Yang, et al., Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis, J. Magnes. Alloys, 10(2022), No. 11, p. 2946.

    Article  CAS  Google Scholar 

  14. R.B. Strozi, D.R. Leiva, J. Huot, W.J. Botta, and G. Zepon, Synthesis and hydrogen storage behavior of Mg-V-Al-Cr-Ni high entropy alloys, Int. J. Hydrogen Energy, 46(2021), No. 2, p. 2351.

    Article  CAS  Google Scholar 

  15. J. Cermak, L. Kral, and P. Roupcova, Hydrogen storage in TiVCrMo and TiZrNbHf multiprinciple-element alloys and their catalytic effect upon hydrogen storage in Mg, Renew. Energy, 188(2022), p. 411.

    Article  CAS  Google Scholar 

  16. A. Grill, J. Horky, A. Panigrahi, G. Krexner, and M. Zehetbauer, Long-term hydrogen storage in Mg and ZK60 after Severe Plastic Deformation, Int. J. Hydrogen Energy, 40(2015), No. 47, p. 17144.

    Article  CAS  Google Scholar 

  17. J.J. Marquez, J. Soyama, R.D.A. Silva, et al., Processing of MgH2 by extensive cold rolling under protective atmosphere, Int. J. Hydrogen Energy, 42(2017), No. 4, p. 2201.

    Article  CAS  Google Scholar 

  18. Y. Zhong, X.F. Wan, Z. Ding, and L.L. Shaw, New dehydrogenation pathway of LiBH4 + MgH2 mixtures enabled by nanoscale LiBH4, Int. J. Hydrogen Energy, 41(2016), No. 47, p. 22104.

    Article  CAS  Google Scholar 

  19. G. Mulas, R. Campesi, S. Garroni, et al., Hydrogen storage in 2NaBH4 + MgH2 mixtures: Destabilization by additives and nanoconfinement, J. Alloys Compd., 536(2012), Suppl. 1, p. S236.

    Article  CAS  Google Scholar 

  20. Z.Y. Lu, J.H. He, M.C. Song, et al., Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 44.

    Article  CAS  Google Scholar 

  21. Z.Y. Lu, H.J. Yu, X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195.

    Article  CAS  Google Scholar 

  22. N. Sazelee, M.F.M. Din, and M. Ismail, Ni0.6Zn0.4O synthes-ised via a solid-state method for promoting hydrogen sorption from MgH2, Materials, 16(2023), No. 6, art. No. 2176.

  23. X.Q. Duan, G.X. Li, W.H. Zhang, et al., Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: From performance to mechanism, Rare Met., 42(2023), No. 6, p. 1923.

    Article  CAS  Google Scholar 

  24. G.B. Tian, F.Y. Wu, H.Y. Zhang, J. Wei, H. Zhao, and L.T. Zhang, Boosting the hydrogen storage performance of MgH2 by Vanadium based complex oxides, J. Phys. Chem. Solids, 174(2023), art. No. 111187.

  25. M.M. Jiang, J. Xu, P. Munroe, and Z.H. Xie, First-principles study on the hydrogen storage properties of MgH2(101) surface by CuNi co-doping, Chem. Phys., 565(2023), art. No. 111760.

  26. S.A. Pighin, G. Capurso, S.L. Russo, and H.A. Peretti, Hydrogen sorption kinetics of magnesium hydride enhanced by the addition of Zr8Ni21 alloy, J. Alloys Compd., 530(2012), p. 111.

    Article  CAS  Google Scholar 

  27. X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101.

  28. Y.Y. Zhao, Y.F. Zhu, J.C. Liu, et al., Enhancing hydrogen storage properties of MgH2 by core-shell CoNi@C, J. Alloys Compd., 862(2021), art. No. 158004.

  29. S. Singh, A. Bhatnagar, V. Shukla, et al., Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2, Int. J. Hydrogen Energy, 45(2020), No. 1, p. 774.

    Article  CAS  Google Scholar 

  30. A.G. Manjón, T. Lö;ffler, M. Meischein, et al., Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid library: Effect of structure and composition on oxygen reduction activity, Nanoscale, 12(2020), No. 46, p. 23570.

    Article  Google Scholar 

  31. D.S. Wu, K. Kusada, T. Yamamoto, et al., On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles, Chem. Sci., 11(2020), No. 47, p. 12731.

    Article  CAS  Google Scholar 

  32. H.J. Qiu, G. Fang, J.J. Gao, et al., Noble metal-free nanoporous high-entropy alloys as high efficient electrocatalysts for oxygen evolution reaction, ACS Materials Lett., 1(2019), No. 5, p. 526.

    Article  CAS  Google Scholar 

  33. Y.G. Yao, Z.Y. Liu, P.F. Xie, et al., Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts, Sci. Adv., 6(2020), No. 11, art. No. eaaz0510.

  34. P. Meena, R. Singh, V.K. Sharma, and I.P. Jain, Role of NiMn9.3Al4.0Co14.1Fe3.6 alloy on dehydrogenation kinetics of MgH2, J. Magnes. Alloys, 6(2018), No. 3, p. 318.

    Article  CAS  Google Scholar 

  35. M.S. El-Eskandarany, S.A. Ahmed, and E. Shaban, Metallic glassy V45Zr20Ni20Cu10Al3Pd2 alloy powders for superior hydrogenation/dehydrogenation kinetics of MgH2, Mater. Today, 5(2018), No. 5, p. 13718.

    CAS  Google Scholar 

  36. P. Edalati, R. Floriano, A. Mohammadi, et al., Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMn-FeNi, Scripta Mater., 178(2020), p. 387.

    Article  CAS  Google Scholar 

  37. R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33759.

    Article  CAS  Google Scholar 

  38. R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23757.

    Article  CAS  Google Scholar 

  39. A. Mohammadi, Y. Ikeda, P. Edalati, et al., High-entropy hydrides for fast and reversible hydrogen storage at room temperature: Binding-energy engineering via first-principles calculations and experiments, Acta Mater., 236(2022), art. No. 118117.

  40. R.V. Muraleedharan, On Johnson-Mehl-Avrami equation, J. Therm. Anal., 37(1991), No. 11, p. 2729.

    Article  CAS  Google Scholar 

  41. E. Xu, H. Li, X.M. You, et al., Influence of micro-amount O2 or N2 on the hydrogenation/dehydrogenation kinetics of hydrogen-storage material MgH2, Int. J. Hydrogen Energy, 42(2017), No. 12, p. 8057.

    Article  CAS  Google Scholar 

  42. M. Ismail, M.S. Yahya, N.A. Sazelee, N.A. Ali, F.A.H. Yap, and N.S. Mustafa, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloys, 8(2020), No. 3, p. 832.

    Article  CAS  Google Scholar 

  43. M.S. El-Eskandarany, E. Shaban, H. Al-Matrouk, et al., Structure, morphology and hydrogen storage kinetics of nanocomposite MgH2/10wt% ZrNi5 powdess, Mater. Today Energy, 3(2017), p. 60.

    Article  Google Scholar 

  44. M.S. Yahya and M. Ismail, Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2, J. Energy Chem., 28(2019), p. 46.

    Article  Google Scholar 

  45. J.Q. Zhang, Q.H. Hou, X.T. Guo, and X.L. Yang, Achieve high-efficiency hydrogen storage of MgH2 catalyzed by nanosheets CoMoO4 and rGO, J. Alloys Compd., 911(2022), art. No. 165153.

  46. C.S. Zhou, R.C. Bowman Jr., Z.Z. Fang, et al., Amorphous TiCu-based additives for improving hydrogen storage properties of magnesium hydride, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38868.

    Article  CAS  Google Scholar 

  47. M.S. Yahya, N.N. Sulaiman, N.S. Mustafa, F.A.H. Yap, and M. Ismail, Improvement of hydrogen storage properties in MgH2 catalysed by K2NbF7, Int. J. Hydrogen Energy, 43(2018), No. 31, p. 14532.

    Article  CAS  Google Scholar 

  48. M.S. El-Eskandarany, F. Al-Ajmi, and M. Banyan, Mechanically-induced catalyzation of MgH2 powders with Zr2Ni-ball milling media, Catalysts, 9(2019), No. 4, art. No. 382.

  49. L.T. Zhang, Z.L. Cai, X.Q. Zhu, et al., Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2, J. Alloys Compd., 805(2019), p. 295.

    Article  CAS  Google Scholar 

  50. M.C. Song, L.T. Zhang, Z.D. Yao, et al., Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH2, Inorg. Chem. Front., 9(2022), No. 15, p. 3874.

    Article  CAS  Google Scholar 

  51. L.T. Zhang, H.J. Yu, Z.Y. Lu, et al., The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2, Chin. J. Chem. Eng., 43(2022), p. 343.

    Article  CAS  Google Scholar 

  52. N. Xu, Z.R. Yuan, Z.H. Ma, et al., Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 54.

    Article  CAS  Google Scholar 

  53. J. Bystrzycki, T. Czujko, and R.A. Varin, Processing by controlled mechanical milling of nanocomposite powders Mg + X (X = Co, Cr, Mo, V, Y, Zr) and their hydrogenation properties, J. Alloys Compd., 404–406(2005), p. 507.

    Article  Google Scholar 

  54. Z.Y. Han, S.X. Zhou, H.P. Chen, H.L. Niu, and N.F. Wang, Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32(2017), No. 2, p. 299.

    Article  CAS  Google Scholar 

  55. N.K. Katiyar, K. Biswas, J.W. Yeh, S. Sharma, and C.S. Tiwary, A perspective on the catalysis using the high entropy alloys, Nano Energy, 88(2021), art. No. 106261.

Download references

Acknowledgements

The authors appreciatively acknowledge the financial support from the National Natural Science Foundation of China (No. 51801078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuying Wu or Liuting Zhang.

Ethics declarations

Liuting Zhang is a youth editorial board member for this journal and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Zhang, H., Song, M. et al. FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage. Int J Miner Metall Mater 30, 2270–2279 (2023). https://doi.org/10.1007/s12613-023-2669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2669-7

Keywords

Navigation