Skip to main content

Advertisement

Log in

Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The effect of Mo on the morphology, crystal structure and hydrogen sorption properties of Mg/C composites prepared by reactive milling was studied. Transmission electron microscopic (TEM) observation shows that Mg/C composites prepared with the addition of Mo are of nanoscale with particle size about 20-120 nm after 3 h of milling under 1 MPa H2. MgH2 of tetrahedral crystal structure predominates in the materials with the geometric shape of oblique hexagonal prism. From X-ray diffraction (XRD) and hydrogen content studies, Mo and crystallitic carbon have a synergistic effect on promoting the hydrogenation rate in the reactive milling process. From differential scanning calorimetric (DSC) studies, the dehydrogenation peak temperature of the Mg/C materials with Mo is lowered to 299-340 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain IP, Lal C, Jain A. Hydrogen Storage in Mg: A Most Promising Material[J]. Int. J. Hydrogen Energy, 2010, 35: 5133–5144

    Article  Google Scholar 

  2. Aguey Zinsou KF, Ares Fernández JR. Hydrogen in Magnesium: New Perspectives toward Functional Stores[J]. Energ. Environ. Sci., 2010, 3: 526–543

    Article  Google Scholar 

  3. Bogdanovic B, Bohmhammel K, Christ B, et al. Thermodynamic Investigation of the Magnesium-Hydrogen System[J]. J. Alloys Compd., 1999, 282: 84–92

    Article  Google Scholar 

  4. Huot J, Liang G, Boily S, et al. Structural Study and Hydrogen Sorption Kinetics of Ball-Milled Magnesium Hydride[J]. J. Alloys Compd., 1999, 293: 495–500

    Article  Google Scholar 

  5. Satyapal S, Petrovic J, Read C, et al. The US Department of Energy's National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements[J]. Catal. Today, 2007, 120: 246–256

    Article  Google Scholar 

  6. Yang J, Sudik A, Wolverton C, et al. High Capacity Hydrogen Storage Materials: Attributes for Automotive Applications and Techniques for Materials Discovery[J]. Chem. Soc. Rev., 2010, 39: 656–675

    Article  Google Scholar 

  7. Fuster V, Castro FJ, Troiani H, et al. Characterization of Graphite Catalytic Effect in Reactively Ball-Milled MgH2-C and Mg-C Composites[J]. Int. J. Hydrogen Energy, 2011, 36: 9051–9061

    Article  Google Scholar 

  8. Zhou SX, Chen HP, Ding C, et al. Effectiveness of Crystallitic Carbon from Coal as Milling Aid and for Hydrogen Storage during Milling with Magnesium[J]. Fuel, 2013, 109: 68–75

    Article  Google Scholar 

  9. Lototskyy M, Sibanyoni JM, Denys RV, et al. Magnesium-Carbon Hydrogen Storage Hybrid Materials Produced by Reactive Ball Milling in Hydrogen[J]. Carbon, 2013, 57: 146–160

    Article  Google Scholar 

  10. Song MY, Bobet JL, Darriet B. Improvement in Hydrogen Sorption Properties of Mg by Reactive Mechanical Grinding with Cr2O3, Al2O3 and CeO2[J]. J. Alloys Compd., 2002, 340: 256–262

    Article  Google Scholar 

  11. Pan YB, Wu YF, Qian L. Modeling and Analyzing the Hydriding Kinetics of Mg-LaNi5 Composites by Chou Model[J]. Int. J. Hydrogen Energy, 2011, 36: 12892–12901

    Article  Google Scholar 

  12. Han ZY, Zhou SX, Wang NF, et al. Crystal Structure and Hydrogen Storage Behaviors of Mg/MoS2 Composites from Ball Milling[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31(4): 773–778

    Article  Google Scholar 

  13. Liang G, Huot J, Boily S, et al. Catalytic Effect of Transition Metals on Hydrogen Sorption in Nanocrystalline Ball Milled MgH2-Tm (T m=Ti, V, Mn, Fe and Ni)[J]. J. Alloys Compd., 1999, 292: 247–252

    Article  Google Scholar 

  14. Shang C, Bououdina M, Song Y, et al. Mechanical Alloying and Electronic Simulations of (MgH2+M) Systems (M= Al, Ti, Fe, Ni, Cu and Nb) for Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2004, 29: 73–80

    Article  Google Scholar 

  15. Gutfleisch O, Dal Toè S, Herrich M, et al. Hydrogen Sorption Properties of Mg-1wt%Ni-0.2wt%Pd Prepared by Reactive Milling[J]. J. Alloys Compd., 2005, 404: 413–416

    Article  Google Scholar 

  16. Bystrzycki J, Czujko T, Varin RA. Processing by Controlled Mechanical Milling of Nanocomposite Powders Mg+X (X= Co, Cr, Mo, V, Y, Zr) and their Hydrogenation Properties[J]. J. Alloys Compd., 2005, 404–406: 507–510

    Article  Google Scholar 

  17. Hanada N, Ichikawa T, Fujii H. Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling[J]. J. Phys. Chem. B, 2005, 109: 7188–7194

    Article  Google Scholar 

  18. Kwon S, Baek S, Mumm DR, et al. Enhancement of the Hydrogen Storage Characteristics of Mg by Reactive Mechanical Grinding with Ni, Fe and Ti[J]. Int. J. Hydrogen Energy, 2008, 33: 4586–4592

    Article  Google Scholar 

  19. Pozzo M, Alfe D. Hydrogen Dissociation and Diffusion on Transition Metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) Surfaces[J]. Int. J. Hydrogen Energy, 2009, 34: 1922–1930

    Article  Google Scholar 

  20. Young K, Ouchi T, Huang B, et al. Effect of Molybdenum Content on Structural, Gaseous Storage, and Electrochemical Properties of C14-Predominant AB2 Metal Hydride Alloys[J]. J. Power Sources, 2011, 196: 8815–8821

    Article  Google Scholar 

  21. Zhang XB, Sun DZ, Yin WY, et al. Crystallographic and Electrochemical Characteristics of La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5)x (x= 0–0.8) Hydrogen Storage Alloys[J]. J. Power Sources, 2006, 154: 290–297

    Article  Google Scholar 

  22. Shi SQ, Li CR, Tang WH. Crystallographic and Electrochemical Performances of La-Mg-Ni-Al-Mo-based Alloys as Anode Materials for Nickel-Metal Hydride Batteries[J]. J. Alloys Compd., 2009, 476: 874–877

    Article  Google Scholar 

  23. Notten P, Hokkeling P. Double-Phase Hydride forming Compounds: A New Class of Highly Electrocatalytic Materials[J]. J. Electrochem. Soc., 1991, 138: 1877–1885

    Article  Google Scholar 

  24. Yeh M, Beibutian V, Hsu S. Effect of Mo Additive on Hydrogen Absorption of Rare-Earth Based Hydrogen Storage Alloy[J]. J. Alloys Compd., 1999, 293: 721–723

    Article  Google Scholar 

  25. Senoh H, Hara Y, Inoue H, et al. Charge Efficiency of Misch Metal-Based Hydrogen Storage Alloy Electrodes at Relatively Low Temperatures[J]. Electrochim. Acta, 2001, 46: 967–971

    Article  Google Scholar 

  26. Ye H, Zhang H. Development of Hydrogen-Storage Alloys for High-Power Nickel-Metal Hydride Batteries[J]. Adv. Eng. Mater., 2001, 3: 481–485

    Article  Google Scholar 

  27. Young K, Ouchi T, Reichman B, et al. Effects of Mo Additive on the Structure and Electrochemical Properties of Low-Temperature AB5 Metal Hydride Alloys[J]. J. Alloys Compd., 2011, 509: 3995–4001

    Article  Google Scholar 

  28. Iwase K, Nakamura Y, Mori K, et al. Hydrogen Absorption-Desorption Properties and Crystal Structure Analysis of Ti-Cr-Mo alloys[J]. J. Alloys Compd., 2005, 404: 99–102

    Article  Google Scholar 

  29. Chen J, Dou S, Liu H. Hydrogen Desorption and Electrode Properties of Zr0.8Ti0.2(V0.3Ni0.6M0.1)2 Alloys[J]. J. Alloys Compd., 1997, 256: 40–44

    Article  Google Scholar 

  30. Asano K, Hayashi S, Nakamura Y, et al. Effect of Substitutional Mo on Diffusion and Site Occupation of Hydrogen in the BCT Monohydride Phase of V-H System Studied by 1H NMR[J]. J. Alloys Compd., 2010, 507: 399–404

    Article  Google Scholar 

  31. Au M, Pourarian F, Sankar S, et al. TiMn2-Based Alloys as High Hydrogen Storage Materials[J]. Mat. Sci. Eng. B, 1995, 33: 53–57

    Article  Google Scholar 

  32. Huang TZ, Wu Z, Xia BJ, et al. Influence of Stoichiometry and Alloying Elements on the Crystallography and Hydrogen Sorption Properties of TiCr Based Alloys[J]. Mat. Sci. Eng. A, 2005, 397: 284–287

    Article  Google Scholar 

  33. Jeong C, Chung W, Iwakura C, et al. Effect of Temperature on the Discharge Capacity of the Laves Phase Alloy Used in Nickel/Metal-Hydride Batteries[J]. J. Power Sources, 1999, 79: 19–24

    Article  Google Scholar 

  34. Zhang XZ, Yang R, Yang JZ, et al. Synthesis of Magnesium Nanoparticles with Superior Hydrogen Storage Properties by Acetylene Plasma Metal Reaction[J]. Int. J. Hydrogen Energy, 2011, 36: 4967–4975

    Article  Google Scholar 

  35. Lillo Ródenas MA, Guo ZX, Aguey Zinsou KF, et al. Effects of Different Carbon Materials on MgH2 Decomposition[J]. Carbon, 2008, 46: 126–137

    Article  Google Scholar 

  36. Zhou SX, Chen HP, Ran WX, et al. Effect of Carbon from anthracite Coal on Decomposition Kinetics of Magnesium Hydride[J]. J. Alloys Compd., 2014, 592: 231–237

    Article  Google Scholar 

  37. Jia YH, Han SM, Zhang W, et al. Hydrogen Absorption and Desorption Kinetics of MgH2 Catalyzed by MoS2 and MoO2[J]. Int. J. Hydrogen Energy, 2013, 38: 2352–2356

    Article  Google Scholar 

  38. Karty A, Grunzweig Genossar J, Rudman P. Hydriding and Dehydriding Kinetics of Mg in a Mg/Mg2Cu Eutectic Alloy: Pressure Sweep Method[J]. J. Appl. Phys., 1979, 50: 7200–7209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixue Zhou  (周仕学).

Additional information

Funded by the National Natural Science Foundation of China ( No. 21176145) and the Graduate Student Innovation Fund of Shandong University of Science and Technology (YC140342)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Zhou, S., Chen, H. et al. Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 299–304 (2017). https://doi.org/10.1007/s11595-017-1596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1596-8

Key words

Navigation