Skip to main content
Log in

Optimizing FeCoNiCrTi high-entropy alloy with hydrogen pumping effect to boost de/hydrogenation performance of magnesium hydride

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The exploration of efficient, long-lived and cost-effective transition metal catalysts is highly desirable for the practical hydrogen storage of magnesium hydride (MgH2) in sustainable energy devices. Herein, FeCoNiCrTi high-entropy alloy (HEA) nanosheets were prepared via a facile wet chemical ball milling strategy and they were introduced into MgH2 to boost the hydrogen storage performance. The refined HEA exhibited superior catalytic activity on MgH2. In contrast to additive-free MgH2, the initial desorption temperature of the constructed MgH2-HEA composite was reduced from 330.0 to 198.5 °C and a remarkable 51% reduction in the dehydrogenation activation energy was achieved. Besides, the MgH2-HEA composite only required one-twentieth time of that consumed by pure MgH2 to absorb 5.0 wt% of H2 at 225 °C. The synergy between the “hydrogen pumping” effect of Mg2Ni/Mg2NiH4 and Mg2Co/Mg2CoH5 couples, as well as the good dispersion of Fe, Cr and Ti on the surface of MgH2 contributed to the enhanced de/hydrogenation performance of the MgH2-HEA composites. This study furnishes important steering for the design and fabrication of multiple transition metal catalysts and may push the commercial application of magnesium-based hydrides one step forward.

Graphical abstract

摘要

探索高效、长寿命和高性价比的过渡金属催化剂对于氢化镁(MgH2)在可持续能源设备中的实际应用具有重要意义。在此,我们通过简单的湿化学球磨策略设计合成了FeCoNiCrTi高熵合金(HEA)纳米片,并将其引入到MgH2中以提高其储氢性能。实验结果表明HEA在MgH2的储氢性能中表现出卓越的催化活性。MgH2-HEA复合材料的初始解吸温度从MgH2的330.0 ℃降低到198.5 ℃,脱氢活化能显著降低51%。此外,MgH2-HEA复合材料在225 ℃时吸收5.0 wt% 氢气的时间是MgH2所需时间的二十分之一。微结构分析结果揭示Mg2Ni/Mg2NiH4、Mg2Co/Mg2CoH5对以及Fe、Cr和Ti催化位点的协同“氢泵”效应提高了MgH2-HEA复合材料的吸放氢性能。本研究可为多元高效过渡金属催化剂的设计和制备提供实验指导,进一步推进镁基氢化物储氢材料的商业化应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang ZX, Li XG, Yao QL, Lu ZH, Zhang N, Xia J, Yang K, Wang YQ, Zhang K, Liu HZ, Zhang LT, Lin HJ, Zhou QJ, Wang F, Yu ZM, Ma JM. 2022 roadmap on hydrogen energy from production to utilizations. Rare Met. 2020;41(10):3251. https://doi.org/10.1007/s12598-022-02029-7.

    Article  CAS  Google Scholar 

  2. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353. https://doi.org/10.1038/35104634.

    Article  CAS  PubMed  Google Scholar 

  3. Wang TZ, Cao XJ, Jiao LF. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience. 2021;1(1):69. https://doi.org/10.1016/j.esci.2021.09.002.

    Article  Google Scholar 

  4. Kim HY, Kim A, Byun M, Lim HK. Comparative feasibility studies of H2 supply scenarios for methanol as a carbon-neutral H2 carrier at various scales and distances. Renew Energy. 2021;180:552. https://doi.org/10.1016/j.renene.2021.08.077.

    Article  CAS  Google Scholar 

  5. Wang SW, Lu YF, Ding Z, Li JB, Chen YA, Tan J. Research progress on Ti-based catalysts modified Mg-based hydrogen storage materials. Chin J Rare Met. 2023;47(12):1642. https://doi.org/10.13373/j.cnki.cjrm.XY23010010.

    Article  Google Scholar 

  6. Allendorf MD, Stavila V, Snider JL, Witman M, Bowden ME, Brooks K, Tran BL, Autrey T. Challenges to developing materials for the transport and storage of hydrogen. Nat Chem. 2022;14(11):1214. https://doi.org/10.1038/s41557-022-01056-2.

    Article  CAS  PubMed  Google Scholar 

  7. Shang YY, Pistidda C, Gizer G, Klassen T, Dornheim M. Mg-based materials for hydrogen storage. J Magnes Alloys. 2021;9(6):1837. https://doi.org/10.1016/j.jma.2021.06.007.

    Article  CAS  Google Scholar 

  8. Ismail M, Yahya MS, Sazelee NA, Ali NA, Yap FAH, Mustafa NS. The effect of K2SiF6 on the MgH2 hydrogen storage properties. J Magnes Alloys. 2020;8(3):832. https://doi.org/10.1016/j.jma.2020.04.002.

    Article  CAS  Google Scholar 

  9. Zhang X, Liu YF, Ren ZH, Zhang XL, Hu JJ, Huang ZG, Lu YH, Gao MX, Pan HG. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energ Environ Sci. 2021;14(4):2302. https://doi.org/10.1039/d0ee03160g.

    Article  CAS  Google Scholar 

  10. Liang ZQ, Yao ZD, Xiao XZ, Wang XC, Kou HQ, Luo WH, Chen CA, Chen LX. Positive impacts of tuning lattice on cyclic performance in ZrCo-based hydrogen isotope storage alloys. Mater Today Energy. 2021;20:100645. https://doi.org/10.1016/j.mtener.2021.100645.

    Article  CAS  Google Scholar 

  11. Lin HJ, Lu YS, Zhang LT, Liu HZ, Edalati K, Révész Á. Recent advances in metastable alloys for hydrogen storage: a review. Rare Met. 2022;41(6):1797. https://doi.org/10.1007/s12598-021-01917-8.

    Article  CAS  Google Scholar 

  12. Ding X, Chen RR, Zhang JX, Chen XY, Su YQ, Guo JJ. Achieving superior hydrogen storage properties via in-situ formed nanostructures: a high-capacity Mg–Ni alloy with La microalloying. Int J Hydrogen Energy. 2022;47(10):6755. https://doi.org/10.1016/j.ijhydene.2021.12.010.

    Article  CAS  Google Scholar 

  13. Zhang XL, Liu YF, Zhang X, Hu JJ, Gao MX, Pan HG. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater Today Nano. 2020;9: 100064. https://doi.org/10.1016/j.mtnano.2019.100064.

    Article  Google Scholar 

  14. Shao YT, Gao HG, Tang QK, Liu YN, Liu JC, Zhu YF, Zhang JG, Li LQ, Hu XH, Ba ZX. Ultra-fine TiO2 nanoparticles supported on three-dimensionally ordered macroporous structure for improving the hydrogen storage performance of MgH2. Appl Surf Sci. 2022;585:152561. https://doi.org/10.1016/j.apsusc.2022.152561.

    Article  CAS  Google Scholar 

  15. Luo YM, Wang QY, Li JH, Xu F, Sun LX, Zou YJ, Chu HL, Li B, Zhang KX. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. Mater Today Nano. 2020;9: 100071. https://doi.org/10.1016/j.mtnano.2019.100071.

    Article  Google Scholar 

  16. Zhu W, Ren L, Lu C, Xu H, Sun FZ, Ma ZW, Zou JX. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano. 2021;15(11):18494. https://doi.org/10.1021/acsnano.1c08343.

    Article  CAS  PubMed  Google Scholar 

  17. Duan CW, Tian YT, Wang XY, Wu MM, Fu D, Zhang YL, Lv W, Su ZH, Xue ZY, Wu Y. Ni-CNTs as an efficient confining framework and catalyst for improving dehydriding/rehydriding properties of MgH2. Renew Energy. 2022;187:417. https://doi.org/10.1016/j.renene.2022.01.048.

    Article  CAS  Google Scholar 

  18. Duan XQ, Li GX, Zhang WH, Luo H, Tang HM, Xu L, Sheng P, Wang XH, Huang XT, Huang CK, Lan ZQ, Zhou WZ, Guo J, Ismail MB, Liu HZ. Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: from performance to mechanism. Rare Met. 2023;42(6):1923. https://doi.org/10.1007/s12598-022-02231-7.

    Article  CAS  Google Scholar 

  19. Ren L, Zhu W, Li YH, Lin X, Xu H, Sun FZ, Lu C, Zou JX. Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 2022;14(1):144. https://doi.org/10.1007/s40820-022-00891-9.

    Article  CAS  Google Scholar 

  20. Churilov GN, Nikolaev NS, Elesina VI, Glushenko GA, Isakova VG, Tomashevich YV. Obtaining particles with the structure Mg@C and (Mg@C)@Pd, their properties and stability in the hydrogenation/dehydrogenation processes. Int J Hydrogen Energy. 2022;47(11):7299. https://doi.org/10.1016/j.ijhydene.2021.03.042.

    Article  CAS  Google Scholar 

  21. Elsabawy KM, Fallatah AM. Over saturated metallic-Mg-ions diffused hollow carbon nano-spheres/Pt for ultrahigh-performance hydrogen storage. Mater Lett. 2018;221:139. https://doi.org/10.1016/j.matlet.2018.03.104.

    Article  CAS  Google Scholar 

  22. Xian KC, Wu MH, Gao MX, Wang S, Li ZL, Gao PY, Yao ZH, Liu YF, Sun WP, Pan HG. A unique nanoflake-shape bimetallic Ti-Nb oxide of superior catalytic effect for hydrogen storage of MgH2. Small. 2022;18(43):2107013. https://doi.org/10.1002/smll.202107013.

    Article  CAS  Google Scholar 

  23. Ren SQ, Fu YK, Zhang L, Cong L, Xie YC, Yu H, Wang WF, Li Y, Jian L, Wang Y, Han SM. An improved hydrogen storage performance of MgH2 enabled by core-shell structure Ni/Fe3O4@MIL. J Alloys Compd. 2022;892:162048. https://doi.org/10.1016/j.jallcom.2021.162048.

    Article  CAS  Google Scholar 

  24. Khajondetchairit P, Ngamwongwan L, Hirunsit P, Suthirakun S. Synergistic effects of V and Ni catalysts on hydrogen sorption kinetics of Mg-based hydrogen storage materials: a computational study. J Phys Chem C. 2022;126(12):5483. https://doi.org/10.1021/acs.jpcc.1c10535.

    Article  CAS  Google Scholar 

  25. Tome KC, Xi SL, Fu YY, Lu C, Lu N, Guan ML, Zhou SX, Yu H. Remarkable catalytic effect of Ni and ZrO2 nanoparticles on the hydrogen sorption properties of MgH2. Inte J Hydrogen Energy. 2022;47(7):4716. https://doi.org/10.1016/j.ijhydene.2021.11.102.

    Article  CAS  Google Scholar 

  26. Zhang LT, Cai ZL, Yao ZD, Ji L, Sun Z, Yan NH, Zhang BY, Xiao BB, Du J, Zhu XQ, Chen LX. A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2. J Mater Chem A. 2019;7(10):5626. https://doi.org/10.1039/C9TA00120D.

    Article  Google Scholar 

  27. Chen M, Pu YH, Li ZY, Huang G, Liu XF, Lu Y, Tang WK, Xu L, Liu SY, Yu RH, Shui JL. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020;13(8):2063. https://doi.org/10.1007/s12274-020-2808-7.

    Article  CAS  Google Scholar 

  28. Zhang J, He L, Yao Y, Zhou XJ, Yu LP, Lu XZ, Zhou DW. Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2. Renew Energy. 2020;154:1229. https://doi.org/10.1016/j.renene.2020.03.089.

    Article  CAS  Google Scholar 

  29. Huo X, Yu H, Xing B, Zuo X, Zhang N. Review of high entropy alloys electrocatalysts for hydrogen evolution, oxygen evolution, and oxygen reduction reaction. Chem Rec. 2022;22(12): e202200175. https://doi.org/10.1002/tcr.202200175.

    Article  CAS  PubMed  Google Scholar 

  30. Li P, Yao YP, Ouyang WG, Liu Z, Yin HY, Wang DH. A stable oxygen evolution splitting electrocatalysts high entropy alloy FeCoNiMnMo in simulated seawater. J Mater Sci Technol. 2023;138:29. https://doi.org/10.1016/j.jmst.2022.08.012.

    Article  CAS  Google Scholar 

  31. Yao ZD, Liang ZQ, Xiao XZ, Qi JC, He JH, Huang X, Kou HQ, Luo WH, Chen CA, Chen LX. Achieving excellent cycle stability in Zr–Nb–Co–Ni based hydrogen isotope storage alloys by controllable phase transformation reaction. Renew Energy. 2022;187:500. https://doi.org/10.1016/j.renene.2022.01.086.

    Article  CAS  Google Scholar 

  32. Ma ZL, Tang QK, Ni JL, Zhu YF, Zhang Y, Li HW, Zhang JG, Liu YN, Ba ZX, Li LQ. Synergistic effect of TiH2 and air exposure on enhancing hydrogen storage performance of Mg2NiH4. Chem Eng J. 2022;433:134489. https://doi.org/10.1016/j.cej.2021.134489.

    Article  CAS  Google Scholar 

  33. Verón MG, Gennari FC. Thermodynamic behavior of the Mg–Co–H system: the effect of hydrogen cycling. J Alloys Compd. 2014;614:317. https://doi.org/10.1016/j.jallcom.2014.06.092.

    Article  CAS  Google Scholar 

  34. Nyamsi SN, Wu Z, Guo LL, Qian CH, Sun LX, Xu F, Uesugi H, Yan GH, Yang FH, Zhang ZX. Insights into a thermodynamically optimal synthesis of the ternary complex hydride Mg2FeH6 for high-density thermal energy storage. ACS Appl Energy Mater. 2021;4(6):5973. https://doi.org/10.1021/acsaem.1c00819.

    Article  CAS  Google Scholar 

  35. Xiao XZ, Xu CC, Shao J, Zhang LT, Qin T, Li SQ, Ge HG, Wang QD, Chen LX. Remarkable hydrogen desorption properties and mechanisms of the Mg2FeH6@MgH2 core–shell nanostructure. J Mater Chem A. 2015;3(10):5517. https://doi.org/10.1039/C4TA06837H.

    Article  CAS  Google Scholar 

  36. Chen Y, Zhang HY, Wu FY, Sun Z, Zheng JG, Zhang LT, Chen LX. Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage. T Nonfer Metal Soc. 2021;31(11):3469. https://doi.org/10.1016/S1003-6326(21)65743-6.

    Article  CAS  Google Scholar 

  37. Zhang LT, Yu HJ, Lu ZY, Zhao CH, Zheng JG, Wei T, Wu FY, Xiao BB. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2. Chin J Chem Eng. 2022;43:343. https://doi.org/10.1016/j.cjche.2021.10.016.

    Article  CAS  Google Scholar 

  38. Lu ZY, Yu HJ, Lu X, Song MC, Wu FY, Zheng JG, Yuan ZF, Zhang LT. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met. 2021;40(11):3195. https://doi.org/10.1007/s12598-021-01764-7.

    Article  CAS  Google Scholar 

  39. Lobo N, Takasaki A, Mineo K, Klimkowicz A, Goc K. Stability investigation of the γ-MgH2 phase synthesized by high-energy ball milling. Int J Hydrogen Energy. 2019;44(55):29179. https://doi.org/10.1016/j.ijhydene.2019.02.191.

    Article  CAS  Google Scholar 

  40. Duan CW, Su ZH, Tian YT, Fu D, Zhang YL, Lv W, Zhang JH, Hu LX, Wu Y. Mechanochemical assisted hydrogenation of Mg-CNTs-Ni: kinetics modeling and reaction mechanism. Chem Eng J. 2022;441:136059. https://doi.org/10.1016/j.cej.2022.136059.

    Article  CAS  Google Scholar 

  41. Liu BG, Zhang B, Chen XH, Lv YJ, Huang HX, Yuan JG, Lv W, Wu Y. Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst. Mater Today Nano. 2022;17: 100168. https://doi.org/10.1007/s10853-022-07971-6.

    Article  CAS  Google Scholar 

  42. Lu CL, Liu HZ, Xu L, Luo H, He SX, Duan XQ, Huang XT, Wang XH, Lan ZQ, Guo J. Two-dimensional vanadium carbide for simultaneously tailoring the hydrogen sorption thermodynamics and kinetics of magnesium hydride. J Magnes Alloys. 2022;10(4):1051. https://doi.org/10.1016/j.jma.2021.03.030.

    Article  CAS  Google Scholar 

  43. Liu XS, Liu HZ, Qiu N, Zhang YB, Zhao GY, Xu L, Lan ZQ, Guo J. Cycling hydrogen desorption properties and microstructures of MgH2–AlH3–NbF5 hydrogen storage materials. Rare Met. 2020;40(4):1003. https://doi.org/10.1007/s12598-020-01425-1.

    Article  CAS  Google Scholar 

  44. Song MC, Zhang LT, Yao ZD, Zheng JG, Shang DH, Chen LX, Li H. Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH2. Inorg Chem Front. 2022;9(15):3874. https://doi.org/10.1039/D2QI00863G.

    Article  CAS  Google Scholar 

  45. Bérubé V, Radtke G, Dresselhaus M, Chen G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res. 2007;31(6–7):637. https://doi.org/10.1002/er.1284.

    Article  CAS  Google Scholar 

  46. Aguey-Zinsou KF, Ares-Fernández JR. Hydrogen in magnesium: new perspectives toward functional stores. Energ Environ Sci. 2010;3(5):526. https://doi.org/10.1039/B921645F.

    Article  CAS  Google Scholar 

  47. Nishimura C, Komaki M, Amano M. Hydrogen permeation through magnesium. J Alloys Compd. 1999;293–295:329. https://doi.org/10.1016/S0925-8388(99)00373-4.

    Article  Google Scholar 

  48. Karst J, Sterl F, Linnenbank H, Weiss T, Hentschel M, Giessen H. Watching in situ the hydrogen diffusion dynamicsin magnesium on the nanoscale. Sci Adv. 2020;6(19):eaaz0566. https://doi.org/10.1126/sciadv.aaz0566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang ZX, Tian ZH, Yao PF, Zhao HM, Xia CQ, Yang T. Improved hydrogen storage kinetic properties of magnesium-based materials by adding Ni2P. Renew Energy. 2022;189:559. https://doi.org/10.1016/j.renene.2022.03.001.

    Article  CAS  Google Scholar 

  50. Fu YK, Zhang L, Li Y, Guo SY, Yu H, Wang WF, Ren KL, Zhang W, Han SM. Effect of ternary transition metal sulfide FeNi2S4 on hydrogen storage performance of MgH2. J Magnes Alloys. 2023;11:2927. https://doi.org/10.1016/j.jma.2021.11.033.

    Article  CAS  Google Scholar 

  51. Lueking A, Yang RT. Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes—implications for hydrogen storage. J Catal. 2002;206(1):165. https://doi.org/10.1006/jcat.2001.3472.

    Article  CAS  Google Scholar 

  52. Chen M, Xiao XZ, Zhang M, Liu MJ, Huang X, Zheng JG, Zhang YW, Jiang LJ, Chen LX. Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride. Int J Hydrogen Energy. 2019;44(3):1750. https://doi.org/10.1016/j.ijhydene.2018.11.118.

    Article  CAS  Google Scholar 

  53. Ji L, Zhang LT, Yang XL, Zhu XQ, Chen LX. The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite. Dalton Trans. 2020;49(13):4146. https://doi.org/10.1039/D0DT00230E.

    Article  CAS  PubMed  Google Scholar 

  54. Singh S, Bhatnagar A, Shukla V, Vishwakarma AK, Soni PK, Verma SK, Shaz MA, Sinha ASK, Srivastava ON. Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2. Int J Hydrogen Energy. 2020;45(1):774. https://doi.org/10.1016/j.ijhydene.2019.10.204.

    Article  CAS  Google Scholar 

  55. Yang XL, Ji L, Yan NH, Sun Z, Lu X, Zhang LT, Zhu XQ, Chen LX. Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage. Dalton T. 2019;48(33):12699. https://doi.org/10.1039/C9DT02084E.

    Article  CAS  Google Scholar 

  56. Zhang LT, Cai ZL, Zhu XQ, Yao ZD, Sun Z, Ji L, Yan NH, Xiao BB, Chen LX. Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2. J Alloys Compd. 2019;805:295. https://doi.org/10.1016/j.jallcom.2019.07.085.

    Article  CAS  Google Scholar 

  57. Yuan ZR, Li SH, Wang KW, Xu N, Sun WW, Sun LT, Cao HJ, Lin HJ, Zhu YF, Zhang Y. In-situ formed Pt nano-clusters serving as destabilization-catalysis bi-functional additive for MgH2. Chem Eng J. 2022;435:135050. https://doi.org/10.1016/j.cej.2022.135050.

    Article  CAS  Google Scholar 

  58. Shokano G, Dehouche Z, Galey B, Postole G. Development of a novel method for the fabrication of nanostructured ZrxNiy catalyst to enhance the desorption properties of MgH2. Catalysts. 2020;10(8):849. https://doi.org/10.1016/j.cej.2022.135050.

    Article  CAS  Google Scholar 

  59. Zhou CS, Bowman RC, Fang ZZ, Lu J, Xu L, Sun P, Liu H, Wu H, Liu Y. Amorphous TiCu-based additives for improving hydrogen storage properties of magnesium hydride. ACS Appl Mater Interfaces. 2019;11(42):38868. https://doi.org/10.1021/acsami.9b16076.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51801078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu-Ying Wu or Liu-Ting Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 774 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, MC., Wu, FY., Jiang, YQ. et al. Optimizing FeCoNiCrTi high-entropy alloy with hydrogen pumping effect to boost de/hydrogenation performance of magnesium hydride. Rare Met. 43, 3273–3285 (2024). https://doi.org/10.1007/s12598-024-02703-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02703-y

Keywords

Navigation