Skip to main content

Advertisement

Log in

Defining the Prognostic and Predictive Role of PIK3CA Mutations: Sifting Through the Conflicting Data

  • Biomarkers (S Dawood, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

PIK3CA is one of the most commonly mutated oncogenes in breast cancer, albeit at variable distribution among the different biological subtypes. Overall, it appears that PIK3CA mutations are most likely found in tumors with less aggressive characteristics, especially estrogen receptor (ER)-positive, luminal A tumors. Studies assessing its prognostic or predictive role have reported conflicting data, in part due to different methodologies used for detection and small sample sizes. The majority of reports used retrospective data from clinical trials thus could not exclude the effect of treatment heterogeneity when evaluating prognostic factors, and analysis was not subtype specific. Since breast cancer subtypes differ in terms of biology, treatment, and outcomes, it is critical that the effects of PIK3CA mutations on pathophysiology and therapy responsiveness are analyzed independently in each subtype. This short review discusses these issues and the significance of PIK3CA mutations in relation to the expression of HER2 and hormone receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.

    Article  CAS  PubMed  Google Scholar 

  2. Katso R et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75.

    Article  CAS  PubMed  Google Scholar 

  3. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.

    Article  CAS  PubMed  Google Scholar 

  4. Cantley LC et al. Oncogenes and signal transduction. Cell. 1991;64(2):281–302.

    Article  CAS  PubMed  Google Scholar 

  5. Samuels Y et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.

    Article  CAS  PubMed  Google Scholar 

  6. Bader AG, Kang S, Vogt PK. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci U S A. 2006;103(5):1475–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Philp AJ et al. The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res. 2001;61(20):7426–9.

    CAS  PubMed  Google Scholar 

  8. Zhao JJ et al. The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci U S A. 2005;102(51):18443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar A, Fernandez-Capetillo O, Carrera AC. Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci U S A. 2010;107(16):7491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kao GD et al. Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem. 2007;282(29):21206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  Google Scholar 

  12. Stemke-Hale K et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cossu-Rocca P et al. Analysis of PIK3CA mutations and activation pathways in triple negative breast cancer. PLoS One. 2015;10(11):e0141763.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ellis MJ, Perou CM. The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov. 2013;3(1):27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miled N et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007;317(5835):239–42.

    Article  CAS  PubMed  Google Scholar 

  16. Mihalcea CE et al. Particular molecular and ultrastructural aspects in invasive mammary carcinoma. Romanian J Morphol Embryol. 2015;56(4):1371–81.

    Google Scholar 

  17. Barbareschi M et al. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res. 2007;13(20):6064–9.

    Article  CAS  PubMed  Google Scholar 

  18. Dogruluk T et al. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res. 2015;75(24):5341–54.

    Article  CAS  PubMed  Google Scholar 

  19. Papaxoinis G et al. Significance of PIK3CA mutations in patients with early breast cancer treated with adjuvant chemotherapy: a Hellenic Cooperative Oncology Group (HeCOG) Study. PLoS One. 2015;10(10):e0140293.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A. 2005;102(3):802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markou A et al. PIK3CA mutational status in circulating tumor cells can change during disease recurrence or progression in patients with breast cancer. Clin Cancer Res. 2014;20(22):5823–34.

    Article  CAS  PubMed  Google Scholar 

  22. Deng G et al. Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer. 2014;14:456.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dupont Jensen J et al. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res. 2011;17(4):667–77.

    Article  CAS  PubMed  Google Scholar 

  24. Kalinsky K et al. PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression. Breast Cancer Res Treat. 2011;129(2):635–43.

    Article  PubMed  Google Scholar 

  25. Miron A et al. PIK3CA mutations in in situ and invasive breast carcinomas. Cancer Res. 2010;70(14):5674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sakr RA et al. PI3K pathway activation in high-grade ductal carcinoma in situ—implications for progression to invasive breast carcinoma. Clin Cancer Res. 2014;20(9):2326–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Troxell ML et al. Phosphatidylinositol-3-kinase pathway mutations are common in breast columnar cell lesions. Mod Pathol. 2012;25(7):930–7.

    Article  CAS  PubMed  Google Scholar 

  28. Saal LH et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65(7):2554–9.

    Article  CAS  PubMed  Google Scholar 

  29. Pang B et al. Prognostic role of PIK3CA mutations and their association with hormone receptor expression in breast cancer: a meta-analysis. Sci Rep. 2014;4:6255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maruyama N et al. Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. Clin Cancer Res. 2007;13(2 Pt 1):408–14.

    Article  CAS  PubMed  Google Scholar 

  31. Cizkova M et al. PIK3CA mutation impact on survival in breast cancer patients and in ERalpha, PR and ERBB2-based subgroups. Breast Cancer Res. 2012;14(1):R28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abramson VG et al. Characterization of breast cancers with PI3K mutations in an academic practice setting using SNaPshot profiling. Breast Cancer Res Treat. 2014;145(2):389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopez-Knowles E et al. Relationship of PIK3CA mutation and pathway activity with antiproliferative response to aromatase inhibition. Breast Cancer Res. 2014;16(3):R68.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Beelen K et al. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Res. 2014;16(1):R13.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sabine VS et al. Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J Clin Oncol. 2014;32(27):2951–8.

    Article  CAS  PubMed  Google Scholar 

  36. Liu YR et al. PIK3CA mutations define favorable prognostic biomarkers in operable breast cancer: a systematic review and meta-analysis. Oncol Targets Ther. 2014;7:543–52.

    CAS  Google Scholar 

  37. Ramirez-Ardila DE et al. Hotspot mutations in PIK3CA associate with first-line treatment outcome for aromatase inhibitors but not for tamoxifen. Breast Cancer Res Treat. 2013;139(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  38. Loi S et al. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci U S A. 2010;107(22):10208–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knuefermann C et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003;22(21):3205–12.

    Article  CAS  PubMed  Google Scholar 

  40. Bosch A et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med. 2015;7(283):283ra51.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Loi S et al. PIK3CA genotype and a PIK3CA mutation-related gene signature and response to everolimus and letrozole in estrogen receptor positive breast cancer. PLoS One. 2013;8(1):e53292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Treilleux I et al. Translational studies within the TAMRAD randomized GINECO trial: evidence for mTORC1 activation marker as a predictive factor for everolimus efficacy in advanced breast cancer. Ann Oncol. 2015;26(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  43. Hortobagyi GN. Everolimus plus exemestane for the treatment of advanced breast cancer: a review of subanalyses from BOLERO-2. Neoplasia. 2015;17(3):279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loi S et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.

    Article  CAS  PubMed  Google Scholar 

  45. Hanker AB et al. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci U S A. 2013;110(35):14372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berns K et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395–402.

    Article  CAS  PubMed  Google Scholar 

  47. Loi S et al. Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. J Natl Cancer Inst. 2013;105(13):960–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pogue-Geile KL et al. Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. J Clin Oncol. 2015;33(12):1340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Majewski IJ et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol. 2015;33(12):1334–9.

    Article  CAS  PubMed  Google Scholar 

  50. Loibl S et al. PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (HER2) therapy in primary HER2-overexpressing breast cancer. J Clin Oncol. 2014;32(29):3212–20.

    Article  CAS  PubMed  Google Scholar 

  51. Baselga J et al. Biomarker analyses in CLEOPATRA: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J Clin Oncol. 2014;32(33):3753–61.

    Article  CAS  PubMed  Google Scholar 

  52. Goel S, Krop IE. Deciphering the role of phosphatidylinositol 3-kinase mutations in human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2015;33(12):1407–9.

    Article  CAS  PubMed  Google Scholar 

  53. Chakrabarty A et al. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors. Cancer Res. 2013;73(3):1190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brough R et al. Functional viability profiles of breast cancer. Cancer Discov. 2011;1(3):260–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Andre F et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  56. Hurvitz SA et al. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet Oncol. 2015;16(7):816–29.

    Article  CAS  PubMed  Google Scholar 

  57. Kriegsmann M et al. Mutational profiles in triple-negative breast cancer defined by ultradeep multigene sequencing show high rates of PI3K pathway alterations and clinically relevant entity subgroup specific differences. Oncotarget. 2014;5(20):9952–65.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Boyault S et al. Mutational characterization of individual breast tumors: TP53 and PI3K pathway genes are frequently and distinctively mutated in different subtypes. Breast Cancer Res Treat. 2012;132(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  59. He J et al. Prognostic value of androgen receptor expression in operable triple-negative breast cancer: a retrospective analysis based on a tissue microarray. Med Oncol. 2012;29(2):406–10.

    Article  CAS  PubMed  Google Scholar 

  60. Tang D et al. The expression and clinical significance of the androgen receptor and E-cadherin in triple-negative breast cancer. Med Oncol. 2012;29(2):526–33.

    Article  CAS  PubMed  Google Scholar 

  61. Takeshita T et al. Clinical significance of androgen receptor and its phosphorylated form in breast cancer. Endocr Relat Cancer. 2013;20(5):L15–21.

    Article  CAS  PubMed  Google Scholar 

  62. Takeshita T et al. Prognostic role of PIK3CA mutations of cell-free DNA in early-stage triple negative breast cancer. Cancer Sci. 2015;106(11):1582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lehmann BD et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16(4):406.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Eichhorn PJ et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 2008;68(22):9221–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008;27(41):5511–26.

    Article  CAS  PubMed  Google Scholar 

  66. De P et al. Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness. Neoplasia. 2014;16(1):43–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Al-Sukhun.

Ethics declarations

Conflict of Interest

Sana Al-Sukhun, Isam Lataifeh, and Rajaa Al-Sukhun declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sukhun, S., Lataifeh, I. & Al-Sukhun, R. Defining the Prognostic and Predictive Role of PIK3CA Mutations: Sifting Through the Conflicting Data. Curr Breast Cancer Rep 8, 73–79 (2016). https://doi.org/10.1007/s12609-016-0215-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-016-0215-6

Keywords

Navigation