Skip to main content

Advertisement

Log in

PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

PIK3CA gene mutations are the most common activating mutations in human breast cancer. Its association with hormone receptor-positive breast cancer makes it a prime target for clinical therapeutic advances to maintain anti-estrogen responsiveness. In anticipation of this therapeutic approach, we have evaluated intratumoral heterogeneity in primary breast cancers with regard to PIK3CA mutation status. In addition, we have assessed for the presence of the mutation in paired pre-invasive breast cancer and metastases. To assess for intratumoral heterogeneity, separate tumor blocks from primary breast cancers (n = 63) were genotyped for PIK3CA mutations. Available paired tissue samples from breast tumors known to harbor mutations underwent massARRAY genotyping (n = 70) to identify PIK3CA and AKT1(E17K) mutations. Cores were macro-dissected from matched tissue, including normal breast, benign lymph nodes (LN), ductal carcinoma in situ, regional LN metastases, and distant metastases. Matched samples underwent genetic fingerprinting by multiple SNP genotyping to confirm genetic identity. Intratumoral heterogeneity is minimal with a concordance rate of 95.2% between two different blocks from primary breast cancers. Complete concordance of PIK3CA mutations is noted between primary breast cancer and DCIS. PIK3CA mutations in primary breast cancer are detected in matched regional LNs (91.7%) and distant metastases (100%). Mutation detection by massARRAY genotyping is sensitive but may be affected by sample quality. Intratumoral heterogeneity as measured by PIK3CA genotype is rare; PIK3CA mutations occur early and are selected for in breast cancer progression. HapMap analysis is an essential control for paired sample analysis. This data is clinically important, particularly, for the design of therapies targeting the PI3K/AKT pathway, as it offers confidence that the detection of PIK3CA mutations in the invasive primary tumor will accurately reflect breast cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev 7(8):606–619

    Article  CAS  Google Scholar 

  2. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. doi:10.1038/onc.2008.245

    Article  PubMed  CAS  Google Scholar 

  3. Loi S, Haibe-Kains B, Majjaj S, Lallemand F, Durbecq V, Larsimont D, Gonzalez-Angulo AM, Pusztai L, Symmans WF, Bardelli A, Ellis P, Tutt AN, Gillett CE, Hennessy BT, Mills GB, Phillips WA, Piccart MJ, Speed TP, McArthur GA, Sotiriou C (2010) PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci USA 107(22):10208–10213. doi:10.1073/pnas.0907011107

    Article  PubMed  CAS  Google Scholar 

  4. Kalinsky K, Jacks LM, Heguy A, Patil S, Drobnjak M, Bhanot UK, Hedvat CV, Traina TA, Solit D, Gerald W, Moynahan ME (2009) PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res 15(16):5049–5059. doi:10.1158/1078-0432.CCR-09-0632

    Article  PubMed  CAS  Google Scholar 

  5. Russnes HG, Vollan HK, Lingjaerde OC, Krasnitz A, Lundin P, Naume B, Sorlie T, Borgen E, Rye IH, Langerod A, Chin SF, Teschendorff AE, Stephens PJ, Maner S, Schlichting E, Baumbusch LO, Karesen R, Stratton MP, Wigler M, Caldas C, Zetterberg A, Hicks J, Borresen-Dale AL (2010) Genomic architecture characterizes tumor progression paths and fate in breast cancer patients. Sci Transl Med 2(38):38ra47. doi:10.1126/scitranslmed.3000611

    PubMed  Google Scholar 

  6. Arnedos M, Nerurkar A, Osin P, A’Hern R, Smith IE, Dowsett M (2009) Discordance between core needle biopsy (CNB) and excisional biopsy (EB) for estrogen receptor (ER), progesterone receptor (PgR) and HER2 status in early breast cancer (EBC). Ann Oncol 20(12):1948–1952. doi:10.1093/annonc/mdp234

    Article  PubMed  CAS  Google Scholar 

  7. Burcombe RJ, Makris A, Richman PI, Daley FM, Noble S, Pittam M, Wright D, Allen SA, Dove J, Wilson GD (2005) Evaluation of ER, PgR, HER-2 and Ki-67 as predictors of response to neoadjuvant anthracycline chemotherapy for operable breast cancer. Br J Cancer 92(1):147–155. doi:10.1038/sj.bjc.6602256

    Article  PubMed  CAS  Google Scholar 

  8. Taucher S, Rudas M, Gnant M, Thomanek K, Dubsky P, Roka S, Bachleitner T, Kandioler D, Wenzel C, Steger G, Mittlbock M, Jakesz R (2003) Sequential steroid hormone receptor measurements in primary breast cancer with and without intervening primary chemotherapy. Endocr Relat Cancer 10(1):91–98

    Article  PubMed  CAS  Google Scholar 

  9. Taucher S, Rudas M, Mader RM, Gnant M, Sporn E, Dubsky P, Roka S, Bachleitner T, Fitzal F, Kandioler D, Wenzel C, Steger GG, Mittlbock M, Jakesz R (2003) Influence of neoadjuvant therapy with epirubicin and docetaxel on the expression of HER2/neu in patients with breast cancer. Breast Cancer Res Treat 82(3):207–213. doi:10.1023/B:BREA.0000004378.15859.51

    Article  PubMed  CAS  Google Scholar 

  10. Brunelli M, Manfrin E, Martignoni G, Miller K, Remo A, Reghellin D, Bersani S, Gobbo S, Eccher A, Chilosi M, Bonetti F (2009) Genotypic intratumoral heterogeneity in breast carcinoma with HER2/neu amplification: evaluation according to ASCO/CAP criteria. Am J Clin Pathol 131(5):678–682. doi:10.1309/AJCP09VUTZWZXBMJ

    Article  PubMed  Google Scholar 

  11. Harris LN, You F, Schnitt SJ, Witkiewicz A, Lu X, Sgroi D, Ryan PD, Come SE, Burstein HJ, Lesnikoski BA, Kamma M, Friedman PN, Gelman R, Iglehart JD, Winer EP (2007) Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res 13(4):1198–1207. doi:10.1158/1078-0432.CCR-06-1304

    Article  PubMed  CAS  Google Scholar 

  12. Hurley J, Doliny P, Reis I, Silva O, Gomez-Fernandez C, Velez P, Pauletti G, Powell JE, Pegram MD, Slamon DJ (2006) Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J Clin Oncol 24(12):1831–1838. doi:10.1200/JCO.2005.02.8886

    Article  PubMed  CAS  Google Scholar 

  13. Mittendorf EA, Wu Y, Scaltriti M, Meric-Bernstam F, Hunt KK, Dawood S, Esteva FJ, Buzdar AU, Chen H, Eksambi S, Hortobagyi GN, Baselga J, Gonzalez-Angulo AM (2009) Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin Cancer Res 15(23):7381–7388. doi:10.1158/1078-0432.CCR-09-1735

    Article  PubMed  CAS  Google Scholar 

  14. Barry WT, Kernagis DN, Dressman HK, Griffis RJ, Hunter JD, Olson JA, Marks JR, Ginsburg GS, Marcom PK, Nevins JR, Geradts J, Datto MB (2010) Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome. J Clin Oncol 28(13):2198–2206. doi:10.1200/JCO.2009.26.7245

    Article  PubMed  Google Scholar 

  15. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532. doi:10.1056/NEJM198809013190901

    Article  PubMed  CAS  Google Scholar 

  16. Dunlap J, Le C, Shukla A, Patterson J, Presnell A, Heinrich MC, Corless CL, Troxell ML (2010) Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Res Treat 120(2):409–418. doi:10.1007/s10549-009-0406-1

    Article  PubMed  CAS  Google Scholar 

  17. Li H, Zhu R, Wang L, Zhu T, Li Q, Chen Q, Wang H, Zhu H (2010) PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Exp Mol Pathol 88(1):150–155. doi:10.1016/j.yexmp.2009.09.016

    Article  PubMed  CAS  Google Scholar 

  18. Miron A, Varadi M, Carrasco D, Li H, Luongo L, Kim HJ, Park SY, Cho EY, Lewis G, Kehoe S, Iglehart JD, Dillon D, Allred DC, Macconaill L, Gelman R, Polyak K (2010) PIK3CA mutations in in situ and invasive breast carcinomas. Cancer Res 70(14):5674–5678. doi:10.1158/0008-5472.CAN-08-2660

    Article  PubMed  CAS  Google Scholar 

  19. Dupont Jensen J, Laenkholm AV, Knoop A, Ewertz M, Bandaru R, Liu W, Hackl W, Barrett JC, Gardner H (2011) PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res 17(4):667–677. doi:10.1158/1078-0432.CCR-10-1133

    Article  PubMed  CAS  Google Scholar 

  20. Janakiraman M, Vakiani E, Zeng Z, Pratilas CA, Taylor BS, Chitale D, Halilovic E, Wilson M, Huberman K, Ricarte Filho JC, Persaud Y, Levine DA, Fagin JA, Jhanwar SC, Mariadason JM, Lash A, Ladanyi M, Saltz LB, Heguy A, Paty PB, Solit DB (2010) Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res 70(14):5901–5911. doi:10.1158/0008-5472.CAN-10-0192

    Article  PubMed  CAS  Google Scholar 

  21. Hafner C, Lopez-Knowles E, Luis NM, Toll A, Baselga E, Fernandez-Casado A, Hernandez S, Ribe A, Mentzel T, Stoehr R, Hofstaedter F, Landthaler M, Vogt T, Pujol RM, Hartmann A, Real FX (2007) Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc Natl Acad Sci USA 104(33):13450–13454. doi:10.1073/pnas.0705218104

    Article  PubMed  CAS  Google Scholar 

  22. Graham K, Ge X, de Las Morenas A, Tripathi A, Rosenberg CL (2011) Gene expression profiles of estrogen receptor-positive and estrogen receptor-negative breast cancers are detectable in histologically normal breast epithelium. Clin Cancer Res 17(2):236–246. doi:10.1158/1078-0432.CCR-10-1369

    Article  PubMed  CAS  Google Scholar 

  23. Maruyama N, Miyoshi Y, Taguchi T, Tamaki Y, Monden M, Noguchi S (2007) Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. Clin Cancer Res 13(2 Pt 1):408–414

    Article  PubMed  CAS  Google Scholar 

  24. Heaphy CM, Griffith JK, Bisoffi M (2009) Mammary field cancerization: molecular evidence and clinical importance. Breast Cancer Res Treat 118(2):229–239. doi:10.1007/s10549-009-0504-0

    Article  PubMed  Google Scholar 

  25. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, Akhavanfard S, Heist RS, Temel J, Christensen JG, Wain JC, Lynch TJ, Vernovsky K, Mark EJ, Lanuti M, Iafrate AJ, Mino-Kenudson M, Engelman JA (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3(75):75ra26. doi:10.1126/scitranslmed.3002003

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Geoffrey Beene Cancer Research Center at MSKCC. We would like to acknowledge the following contributors for completion of the study, Marina Drobnjak from the Pathology Core Facility for sample procurement and Sabrena Thomas, Kety Huberman, and Olga Amin from the Geoffrey Beene Translational Core Facility for Sequenom mutation detection.

Conflict of interest

The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ellen Moynahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinsky, K., Heguy, A., Bhanot, U.K. et al. PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression. Breast Cancer Res Treat 129, 635–643 (2011). https://doi.org/10.1007/s10549-011-1601-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1601-4

Keywords

Navigation