Skip to main content

Advertisement

Log in

Mutational characterization of individual breast tumors: TP53 and PI3K pathway genes are frequently and distinctively mutated in different subtypes

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Understanding how cancer genes are mutated in individual tumors is an important issue with potential clinical and therapeutic impact. This is especially relevant with recently developed targeted therapies since mutated genes can be targets and/or predictors. However, to date, gene mutation profiling in individual tumors is still underexplored. Breast cancer is composed of various subtypes. We presumed that this heterogeneity reflected the involvement of different molecular mechanisms including gene mutations that affect defined signaling pathways. Unlike the majority of published mutational studies, this study was aimed to draw a mutation profile in individual tumors by screening a panel of cancer genes in the same tumor. Thus, five genes frequently mutated in breast cancers: TP53, PIK3CA, PTEN, CDH1, and AKT1 were screened in each of 120 human primary breast tumors. Mutations in at least one of these genes were found in 62.5% of the tumors, of which the majority carried a single-gene mutation. Interestingly, a substantial proportion of tumors carried mutations either in TP53 or in genes of the PI3K pathway (PIK3CA or PTEN or AKT1). These two distinct mutation patterns were significantly associated to hormone receptor expression but independent of HER2 status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumors. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  2. Hugh J, Hanson J, Cheang MC et al (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 8:1168–1176

    Article  Google Scholar 

  3. Sjöblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  4. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  PubMed  CAS  Google Scholar 

  5. Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    Article  PubMed  CAS  Google Scholar 

  6. Olivier M, Langerød A, Carrieri P et al (2006) The clinical value of TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157–1167

    Article  PubMed  CAS  Google Scholar 

  7. Langerød A, Zhao H, Borgan Ø et al (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9:R30

    Article  PubMed  Google Scholar 

  8. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  PubMed  CAS  Google Scholar 

  9. Jiang BF, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  PubMed  CAS  Google Scholar 

  10. Miled N, Yan Y, Hon WC et al (2007) Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317:239–242

    Article  PubMed  CAS  Google Scholar 

  11. Huang CH, Mandelker D, Schmidt-Kittler O et al (2007) The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318:1744–1748

    Article  PubMed  CAS  Google Scholar 

  12. Li SY, Rong M, Grieu F, Iacopetta B (2006) PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res Treat 96:91–95

    Article  PubMed  CAS  Google Scholar 

  13. Saal LH, Holm K, Maurer M et al (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65:2554–2559

    Article  PubMed  CAS  Google Scholar 

  14. Pérez-Tenorio G, Alkhori L, Olsson B et al (2007) PIK3CA mutations and PTEN loss correlated with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res 13:3577–3584

    Article  PubMed  Google Scholar 

  15. Kalinsky K, Jacks LM, Heguy A et al (2009) PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res 15:5049–5059

    Article  PubMed  CAS  Google Scholar 

  16. López-Knowles E, O’Toole SA, McNeil CM et al (2009) PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 126:1121–1131

    Google Scholar 

  17. Carpten JD, Faber AL, Horn C, Donoho GP et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439–445

    Article  PubMed  CAS  Google Scholar 

  18. Yin Y, Shen WH (2008) PTEN: a new guardian of the genome. Oncogene 27:5443–5453

    Article  PubMed  CAS  Google Scholar 

  19. Schrader KA, Masciari S, Boyd N et al (2008) Hereditary diffuse gastric cancer: association with lobular breast cancer. Fam Cancer 7:73–82

    Article  PubMed  Google Scholar 

  20. Bertucci F, Orsetti B, Nègre V et al (2008) Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene 27:5359–5372

    Article  PubMed  CAS  Google Scholar 

  21. Engelman JA (2009) Targeting PI3K signaling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    Article  PubMed  CAS  Google Scholar 

  22. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9:862–873

    Article  PubMed  CAS  Google Scholar 

  23. Mehta CR, Patel NR (1986) Algorithm 643. FEXACT: a Fortran subroutine for Fisher’s exact test on unordered r*c contingency tables. ACM Trans Math Softw 12:154–161

    Article  Google Scholar 

  24. Clarkson DB, Fan Y, Joe H (1993) A remark on algorithm 643: FEXACT: an algorithm for performing Fisher’s Exact Test in r x c contingency tables. ACM Trans Math Softw 19:484–488

    Article  Google Scholar 

  25. Berx G, Becker KF, Höfler H, van Roy F (1998) Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12:226–237

    Article  PubMed  CAS  Google Scholar 

  26. Huiping C, Kristjansdottir S, Jonasson JG, Magnusson J, Egilsson V, Ingvarsson S (2001) Alterations of E-cadherin and beta-catenin in gastric cancer. BMC cancer 1:16

    Article  PubMed  CAS  Google Scholar 

  27. Salahshor S, Haixin L, Huo H et al (2001) Low frequency of E-cadherin alterations in familial breast cancer. Breast Cancer Res 3:199–207

    Article  PubMed  CAS  Google Scholar 

  28. Murugan AK, Hong NT, Fukui Y, Munirajan AK, Tsuchida N (2008) Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int J Oncol 32:101–111

    PubMed  CAS  Google Scholar 

  29. Catasus L, Gallardo A, Cuatrecasas M, Prat J (2008) PIK3CA mutations in the kinase domain (exon 20) of uterine endometrial adenocarcinomas are associated with adverse prognostic parameters. Mod Pathol 21:131–139

    PubMed  CAS  Google Scholar 

  30. Holstege H, Joosse SA, van Oostrom CT, Nederlof PM, de Vries A, Jonkers J (2009) High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res 69:3625–3633

    Article  PubMed  CAS  Google Scholar 

  31. Manié E, Vincent-Salomon A, Lehmann-Che J et al (2009) High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal tumors. Cancer Res 69:663–671

    Article  PubMed  Google Scholar 

  32. Baker L, Quinlan PR, Patten N et al (2010) p53 mutation, deprivation and poor prognosis in primary breast cancer. Br J Cancer 102:719–726

    Article  PubMed  CAS  Google Scholar 

  33. Zhou W, Muggerud AA, Vu P et al (2009) Full sequencing of TP53 identifies identical mutations within in situ and invasive components in breast cancer suggesting clonal evolution. Mol Oncol 3:214–219

    Article  PubMed  CAS  Google Scholar 

  34. Offersen BV, Alsner J, Ege Olsen K et al (2008) A comparison among HER2, TP53, PAI-1, angiogenesis, and proliferation activity as prognostic variables in tumors from 408 patients diagnosed with early breast cancer. Acta Oncol 47:618–632

    Article  PubMed  Google Scholar 

  35. Petitjean A, Mathe E, Kato S et al (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629

    Article  PubMed  CAS  Google Scholar 

  36. Rhei E, Kang L, Bogomolniy F, Federici MG, Borgen PI, Boyd J (1997) Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res 57:3657–3659

    PubMed  CAS  Google Scholar 

  37. Ueda K, Nishijima M, Inui H et al (1998) Infrequent mutations in the PTEN/MMAC1 gene among primary breast cancers. Jpn J Cancer Res 89:17–21

    Article  PubMed  CAS  Google Scholar 

  38. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091

    Article  PubMed  CAS  Google Scholar 

  39. Marty B, Maire V, Gravier E et al (2008) Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Res 10:R101

    Article  PubMed  Google Scholar 

  40. Muggerud AA, Rønneberg JA, Wärnberg F et al (2010) Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res 12:R3

    Article  PubMed  Google Scholar 

  41. Michelucci A, Di Cristofano C, Lami A et al (2009) PIK3CA in breast carcinoma: a mutational analysis of sporadic and hereditary cases. Diag Mol Pathol 18:200–205

    Article  CAS  Google Scholar 

  42. Righetti SC, Della Torre G, Pilotti S et al (1996) A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res 56:689–693

    PubMed  CAS  Google Scholar 

  43. Di Cintio A, Di Gennaro E, Budillon A (2010) Restoring p53 function in cancer: novel therapeutic approaches for applying the brakes to tumorigenesis. Recent Pat Anticancer Drug Discov 5:1–13

    Article  PubMed  CAS  Google Scholar 

  44. Ghayad S, Cohen PA (2010) Inhibitors of the PI3K/Akt/mTOR pathway: new hope for breast cancer patients. Recent Pat Anticancer Drug Discov 5:29–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported partially by funds from the Ligue Départementale de l’Ain and from Institut National du Cancer. We thank Pr Jean Yves Blay for helpful discussion, Thérèse Gargi for clinical data collection and documentation and George Hinkal for assistance in manuscript writing.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyault, S., Drouet, Y., Navarro, C. et al. Mutational characterization of individual breast tumors: TP53 and PI3K pathway genes are frequently and distinctively mutated in different subtypes. Breast Cancer Res Treat 132, 29–39 (2012). https://doi.org/10.1007/s10549-011-1518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1518-y

Keywords

Navigation