Skip to main content
Log in

Screening of Lactic Acid Bacteria Strains for Potential Sourdough and Bread Applications: Enzyme Expression and Exopolysaccharide Production

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Twenty-eight strains of lactic acid bacteria (LAB) were characterized for the ability to express enzymes of interest (including protease, xylanase, α-amylase, laccase, and glucose oxidase) as well as the ability to produce exopolysaccharide (EPS). The screening of enzyme capability for all LAB strains proceeded in a progressive 3-stage manner that helps to profile the efficiency of LAB strains in expressing chosen enzymes (Stage 1), highlights the strains with affinity for flour as the substrate (Stage 2), and discerns strains that can adapt well in a simulated starter environment (Stage 3). The theoretical ability of LAB to express these enzymes was also assessed using Basic Local Alignment Search Tool (BLAST) analysis to identify the underlying genes in the whole genome sequence. By consolidating both experimental data and information obtained from BLAST, three LAB strains were deemed optimal in expressing enzymes, namely, Lb. delbrueckii subsp. bulgaricus (RBL 52), Lb. rhamnosus (RBL 102), and Lb. plantarum (ATCC 10241). Meanwhile, EPS-producing capabilities were observed for 10 out of 28 LAB strains, among which, Lactococcus lactis subsp. diacetylactis (RBL 37) had the highest total EPS yield (274.15 mg polysaccharide/L culture) and produced 46.2% polysaccharide with a molecular mass of more than 100 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data were provided in the supplementary information.

References

  1. Khodaei N, Nguyen MM, Mdimagh A, Bayen S, Karboune S (2021) Compositional diversity and antioxidant properties of essential oils: predictive models. LWT 138:110684

    Article  CAS  Google Scholar 

  2. Dong Y, Ismail Fliss I, Karboune S (2024) Investigation of in situ and ex situ mode of LAB incorporation and the effect on dough viscoelasticity, bread texture, and overall physical quality postbaking. ACS Food Science & Technology 4(2):316–332

    Article  CAS  Google Scholar 

  3. Dong Y, Karboune S (2021) A review of bread qualities and current strategies for bread bioprotection: flavor, sensory, rheological, and textural attributes. Compr Rev Food Sci Food Saf 20:1937–1981

    Article  CAS  PubMed  Google Scholar 

  4. Axel C, Zannini E, Arendt EK (2017) Mold spoilage of bread and its biopreservation: a review of current strategies for bread shelf-life extension. Crit Rev Food Sci Nutr 57(16):3528–3542

    Article  CAS  PubMed  Google Scholar 

  5. Florou-Paneri P, Christaki E, Bonos E (2013) Lactic acid bacteria as source of functional ingredients. Lactic acid bacteria-R & D for food, health and livestock purposes. IntechOpen

    Google Scholar 

  6. Jideani VA, Vogt K (2016) Antimicrobial packaging for extending the shelf life of bread—a review. Crit Rev Food Sci Nutr 56(8):1313–1324

    Article  CAS  PubMed  Google Scholar 

  7. Pozo-Bayón MA, Guichard E, Cayot N (2006) Flavor control in baked cereal products. Food Rev Intl 22(4):335–379

    Article  Google Scholar 

  8. Hui YH, Corke H, Leyn De, Nip WK, Cross NA (2008) Bakery products: science and technology. John Wiley & Sons, Hoboken

    Google Scholar 

  9. Angmo K, Kumari A, Bhalla TC (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-food Science and Technology 66:428–435

    Article  CAS  Google Scholar 

  10. Tieking M, Gänzle MG (2005) Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Technol 16(1–3):79–84

    Article  CAS  Google Scholar 

  11. Mohania D, Nagpal R, Kumar M, Bhardwaj A, Yadav M, Jain S et al (2008) Molecular approaches for identification and characterization of lactic acid bacteria. J Dig Dis 9(4):190–198

    Article  PubMed  Google Scholar 

  12. Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71(4):394–406

    Article  CAS  PubMed  Google Scholar 

  13. Gobbetti M, De Angelis M, Di Cagno R, Rizzell CG (2008) Sourdough/lactic acid bacteria. Academic Press, In Gluten-free cereal products and beverages, pp 267–288

    Google Scholar 

  14. Naik AS, Waghmare R (2020) Application of glycosyl hydrolases in food industry. Industrial Applications of Glycoside Hydrolases. Springer, Singapore, pp 217–228

    Chapter  Google Scholar 

  15. Chen Y, Eder S, Schubert S, Gorgerat S, Boschet E, Baltensperger L, Windhab EJ (2021) Influence of amylase addition on bread quality and bread staling. ACS Food Science & Technology 1(6):1143–1150

    Article  CAS  Google Scholar 

  16. Mohamed ER, Halaby MS, Nadir AS, El-Masry HG (2019) The effect of alpha-amylase and ascorbic acid as improvers on pan bread quality. Middle East J Appl Sci 9:906–913

    Google Scholar 

  17. Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010) The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11(1):1–15

    Article  Google Scholar 

  18. García-Cano I, Rocha-Mendoza D, Ortega-Anaya J, Wang K, Kosmerl E, Jiménez-Flores R (2019) Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl Microbiol Biotechnol 103(13):5243–5257

    Article  PubMed  PubMed Central  Google Scholar 

  19. Griffiths MW, Tellez AM (2013) Lactobacillus helveticus: the proteolytic system. Front Microbiol 4:40677

    Article  Google Scholar 

  20. Azizi S, Azizi MH, Moogouei R, Rajaei P (2020) The effect of quinoa flour and enzymes on the quality of gluten-free bread. Food Sci Nutr 8(5):2373–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawamura-Konishi Y, Shoda K, Koga H, Honda Y (2013) Improvement in gluten-free rice bread quality by protease treatment. J Cereal Sci 58(1):45–50

    Article  CAS  Google Scholar 

  22. Dai Y, Tyl C (2021) A review on mechanistic aspects of individual versus combined uses of enzymes as clean label-friendly dough conditioners in breads. J Food Sci 86(5):1583–1598

    Article  CAS  PubMed  Google Scholar 

  23. Sharma N, Sharma N (2017) Microbial xylanases and their industrial applications as well as future perspectives: a review. Global J Biol Agric Health Sci 6:5–12

    CAS  Google Scholar 

  24. Selinheimo E, Autio K, Kruus K, Buchert J (2007) Elucidating the mechanism of laccase and tyrosinase in wheat bread making. J Agric Food Chem 55(15):6357–6365

    Article  CAS  PubMed  Google Scholar 

  25. Niño-Medina G, Gutiérrez-Soto G, Urías-Orona V, Hernández-Luna CE (2017) Effect of laccase from Trametes maxima CU1 on physicochemical quality of bread. Cogent Food & Agriculture 3(1):1328762

    Article  Google Scholar 

  26. Eugenia Steffolani M, Ribotta PD, Pérez GT, León AE (2012) Combinations of glucose oxidase, α-amylase and xylanase affect dough properties and bread quality. Int J Food Sci Technol 47(3):525–534

    Article  Google Scholar 

  27. Primo-Martín C, Wang M, Lichtendonk WJ, Plijter JJ, Hamer RJ (2005) An explanation for the combined effect of xylanase–glucose oxidase in dough systems. J Sci Food Agric 85(7):1186–1196

    Article  Google Scholar 

  28. Yang M, Yue Y, Liu L, Tong L, Wang L, Ashraf J, Zhou S (2021) Investigation of combined effects of xylanase and glucose oxidase in whole wheat buns making based on reconstituted model dough system. LWT 135:110261

    Article  CAS  Google Scholar 

  29. Primo-Martin C, Valera R, Martinez-Anaya MA (2003) Effect of pentosanase and oxidases on the characteristics of doughs and the glutenin macropolymer (GMP). J Agric Food Chem 51(16):4673–4679

    Article  CAS  PubMed  Google Scholar 

  30. Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A et al (2006) Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem 54(26):9873–9881

    Article  PubMed  Google Scholar 

  31. Korcz E, Varga L (2021) Exopolysaccharides from lactic acid bacteria: techno-functional application in the food industry. Trends Food Sci Technol 110:375–384

    Article  CAS  Google Scholar 

  32. Tamani RJ, Goh KKT, Brennan CS (2013) Physico-chemical properties of sourdough bread production using selected lactobacilli starter cultures. J Food Qual 36(4):245–252

    Article  CAS  Google Scholar 

  33. Symons LJ, Brennan CS (2004) The influence of (1→ 3)(1→ 4)-β-D-Glucan-rich fractions from barley on the physicochemical properties and in vitro reducing sugar release of white wheat breads. J Food Sci 69(6):463–467

    Article  Google Scholar 

  34. Petkova M, Stefanova P, Gotcheva V, Kuzmanova I, Angelov A (2020) Microbiological and physiochemical characterization of traditional bulgarian sourdoughs and screening of lactic acid bacteria for amylolytic activity. J Chem Technol Metallurgy 55(5)

  35. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069

    Article  CAS  PubMed  Google Scholar 

  36. Coêlho DF, Saturnino TP, Fernandes FF, Mazzola PG, Silveira E, Tambourgi EB (2016) Azocasein substrate for determination of proteolytic activity: reexamining a traditional method using bromelain samples. Biomed Res Int. https://doi.org/10.1155/2016/8409183

    Article  PubMed  PubMed Central  Google Scholar 

  37. Karboune S, L’Hocine L, Anthoni J, Geraert PA, Kermasha S (2009) Properties of selected hemicellulases of a multi-enzymatic system from Penicillium funiculosum. Biosci Biotechnol Biochem 73(6):1286–1292

    Article  CAS  PubMed  Google Scholar 

  38. Li M, Karboune S (2021) Laccase-catalyzed conjugation of potato protein (PPT) with selected pectic polysaccharides (PPS): conjugation efficiency and emulsification properties. Food Chem 342:128212

    Article  CAS  PubMed  Google Scholar 

  39. Romo-Rodríguez P, Acevedo-Aguilar FJ, Lopez-Torres A, Wrobel K, Wrobel K, Gutiérrez-Corona JF (2015) Cr (VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: cooperative interaction with organic acids in the biotransformation of Cr (VI). Chemosphere 134:563–570

    Article  PubMed  Google Scholar 

  40. Li J, Karboune S (2019) Characterization of the composition and the techno-functional properties of mannoproteins from Saccharomyces cerevisiae yeast cell walls. Food Chem 297:124867

    Article  CAS  PubMed  Google Scholar 

  41. Sundarram A, Murthy TPK (2014) α-amylase production and applications: a review. Journal of Applied & Environmental Microbiology 2(4):166–175

    Google Scholar 

  42. Toe CJ, Foo HL, Loh TC, Mohamad R, Abdul Rahim R, Idrus Z (2019) Extracellular proteolytic activity and amino acid production by lactic acid bacteria isolated from Malaysian foods. Int J Mol Sci 20(7):1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Papamanoli E, Tzanetakis N, Litopoulou-Tzanetaki E, Kotzekidou P (2003) Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Sci 65(2):859–867

    Article  CAS  PubMed  Google Scholar 

  44. Essid I, Medini M, Hassouna M (2009) Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat. Meat Sci 81(1):203–208

    Article  CAS  PubMed  Google Scholar 

  45. Llorente-Bousquets A, Pérez-Munguía S, Farres A (2008) Novel extracellular proteolytic activity in Pediococcus acidilactici ATCC 8042. Can J Microbiol 54(8):694–699

    Article  CAS  PubMed  Google Scholar 

  46. Gänzle MG, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24(2):128–138

    Article  PubMed  Google Scholar 

  47. Upadhyay VK, McSweeney PLH, Magboul AAA, Fox PF (2004) Proteolysis in cheese during ripening. Cheese: chemistry, physics and microbiology 1(3):391–434

    CAS  Google Scholar 

  48. Cizeikiene D, Jagelaviciute J, Stankevicius M, Maruska A (2020) Thermophilic lactic acid bacteria affect the characteristics of sourdough and whole-grain wheat bread. Food Biosci 38:100791

    Article  CAS  Google Scholar 

  49. Gänzle MG (2014) Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol 37:2–10

    Article  PubMed  Google Scholar 

  50. Matthews A, Grimaldi A, Walker M, Bartowsky E, Grbin P, Jiranek V (2004) Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl Environ Microbiol 70(10):5715–5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harris AD, Ramalingam C (2010) Xylanases and its application in food industry: a review. J Exp Sci 1(7):1–11

    Google Scholar 

  52. Goswani GK, Rawat S (2015) Microbial xylanase and their applications. Int J Curr Res Acad Rev 3(6):436–450

    Google Scholar 

  53. Camacho NA, Aguilar G (2003) Production, purification, and characterization of a low-molecular-mass xylanase from Aspergillus sp. and its application in baking. Appl biochem biotech 104(3):159–171

    Article  CAS  Google Scholar 

  54. Pontonio E, Mahony J, Di Cagno R, Motherway MOC, Lugli GA, O’Callaghan A et al (2016) Cloning, expression and characterization of a β-D-xylosidase from Lactobacillus rossiae DSM 15814 T. Microb Cell Fact 15(1):1–12

    Article  Google Scholar 

  55. Michlmayr H, Hell J, Lorenz C, Böhmdorfer S, Rosenau T, Kneifel W (2013) Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl Environ Microbiol 79(21):6747–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lasrado LD, Gudipati M (2013) Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohyd Polym 92(2):1978–1983

    Article  CAS  Google Scholar 

  57. Madhukumar MS, Muralikrishna G (2012) Fermentation of xylo-oligosaccharides obtained from wheat bran and Bengal gram husk by lactic acid bacteria and bifidobacteria. J Food Sci Technol 49(6):745–752

    Article  CAS  PubMed  Google Scholar 

  58. Patel MJ, Ng JHY, Hawkins WE, Pitts KF, Chakrabarti-Bell S (2012) Effects of fungal α-amylase on chemically leavened wheat flour doughs. J Cereal Sci 56(3):644–651

    Article  CAS  Google Scholar 

  59. Díaz-Ruiz G, Guyot J, Ruiz-Teran F, Morlon-Guyot J, Wacher C (2003) Microbial and physiological characterization of weakly amylolytic but fast-growing lactic acid bacteria: a functional role in supporting microbial diversity in pozol, a Mexican fermented maize beverage. Appl Environ Microbiol 69(8):4367–4374

    Article  PubMed  PubMed Central  Google Scholar 

  60. Songré-Ouattara LT, Mouquet-Rivier C, Icard-Vernière C, Humblot C, Diawara B, Guyot JP (2008) Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. Int J Food Microbiol 128(2):395–400

    Article  PubMed  Google Scholar 

  61. Sann AI, Morlon-Guyot J, Guyot JP (2002) New efficient amylase-producing strains of Lactobacillus plantarum and L fermentum isolated from different Nigerian traditional fermented foods. Int J Food Microbiol 72(1–2):53–62

    Article  Google Scholar 

  62. Reddy G, Altaf MD, Naveena BJ, Venkateshwar M, Kumar EV (2008) Amylolytic bacterial lactic acid fermentation—a review. Biotechnol Adv 26(1):22–34

    Article  CAS  PubMed  Google Scholar 

  63. Petrova P, Petrov K (2012) Direct starch conversion into L-(+)-lactic acid by a novel amylolytic strain of Lactobacillus paracasei B41. Starch-stärke 64(1):10–17

    Article  CAS  Google Scholar 

  64. Petrova P, Petrov K (2020) Lactic acid fermentation of cereals and pseudocereals: ancient nutritional biotechnologies with modern applications. Nutrients 12(4):1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Demirkol DO, Dornbusch K, Feller KH, Timur S (2011) Microfluidic devices and true-color sensor as platform for glucose oxidase and laccase assays. Eng Life Sci 11(2):182–188

    Article  CAS  Google Scholar 

  66. Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K (2006) Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci 43(2):152–159

    Article  CAS  Google Scholar 

  67. Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13(6–7):205–216

    Article  CAS  Google Scholar 

  68. Adelakun OE, Kudanga T, Parker A, Green IR, le Roes-Hill ML, Burton SG (2012) Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity. J Mol Catal B Enzym 74:29–35

    Article  CAS  Google Scholar 

  69. Aljawish A, Chevalot I, Jasniewski J, Paris C, Scher J, Muniglia L (2014) Laccase-catalysed oxidation of ferulic acid and ethyl ferulate in aqueous medium: a green procedure for the synthesis of new compounds. Food Chem 145:1046–1054

    Article  CAS  PubMed  Google Scholar 

  70. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotechnol Adv 27(4):489–501

    Article  CAS  PubMed  Google Scholar 

  71. Callejón S, Sendra R, Ferrer S, Pardo I (2014) Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl Microbiol Biotechnol 98(1):185–198

    Article  PubMed  Google Scholar 

  72. Callejón S, Sendra R, Ferrer S, Pardo I (2017) Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine. PLoS ONE 12(10):e0186019

    Article  PubMed  PubMed Central  Google Scholar 

  73. Guarcello R, De Angelis M, Settanni L, Formiglio S, Gaglio R, Minervini F et al (2016) Selection of amine-oxidizing dairy lactic acid bacteria and identification of the enzyme and gene involved in the decrease of biogenic amines. Appl Environ Microbiol 82(23):6870–6880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Olmeda I, Casino P, Collins RE, Sendra R, Callejón S, Huesa J, Pardo I (2021) Structural analysis and biochemical properties of laccase enzymes from two Pediococcus species. Microb Biotechnol 14(3):1026–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McPhillips K, Waters DM, Parlet C, Walsh DJ, Arendt EK, Murray PG (2014) Purification and characterisation of a β-1, 4-xylanase from Remersonia thermophila CBS 54.069 and its application in bread making. Appl biochem biotech 172(4):1747–1762

    Article  CAS  Google Scholar 

  76. Waters DM, Ryan LA, Murray PG, Arendt EK, Tuohy MG (2011) Characterisation of a Talaromyces emersonii thermostable enzyme cocktail with applications in wheat dough rheology. Enzyme Microb Technol 49(2):229–236

    Article  CAS  PubMed  Google Scholar 

  77. Al Loman A, Ju LK (2016) Towards complete hydrolysis of soy flour carbohydrates by enzyme mixtures for protein enrichment: a modeling approach. Enzyme Microb Technol 86:25–33

    Article  CAS  Google Scholar 

  78. Coda R, Di Cagno R, Gobbetti M, Rizzello CG (2014) Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiol 37:51–58

    Article  CAS  PubMed  Google Scholar 

  79. Coda R, Di Cagno R, Rizzello CG, Nionelli L, Edema MO, Gobbetti M (2011) Utilization of African grains for sourdough bread making. J Food Sci 76(6):329–335

    Article  Google Scholar 

  80. Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16(1–3):57–69

    Article  CAS  Google Scholar 

  81. Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2014) How the sourdough may affect the functional features of leavened baked goods. Food Microbiol 37:30–40

    Article  CAS  PubMed  Google Scholar 

  82. Thiel C, Gänzle M, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem 79(1):45–51

    Article  Google Scholar 

  83. Zotta T, Ricciardi A, Parente E (2007) Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. Int J Food Microbiol 115(2):165–172

    Article  CAS  PubMed  Google Scholar 

  84. Moslehishad M, Mirdamadi S, Ehsani MR, Ezzatpanah H, Moosavi-Movahedi AA (2013) The proteolytic activity of selected lactic acid bacteria in fermenting cow’s and camel’s milk and the resultant sensory characteristics of the products. Int J Dairy Technol 66(2):279–285

    Article  Google Scholar 

  85. Gandhi A, Shah NP (2014) Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions. Int J Food Sci Nutr 65(8):937–941

    Article  CAS  PubMed  Google Scholar 

  86. Manini F, Casiraghi MC, Poutanen K, Brasca M, Erba D, Plumed-Ferrer C (2016) Characterization of lactic acid bacteria isolated from wheat bran sourdough. LWT-food Science and Technology 66:275–283

    Article  CAS  Google Scholar 

  87. Rollan G, De Angelis M, Gobbetti M, De Valdez GF (2005) Proteolytic activity and reduction of gliadin-like fractions by sourdough lactobacilli. J Appl Microbiol 99(6):1495–1502

    Article  CAS  PubMed  Google Scholar 

  88. Gerez C, Rollan GC, De Valdez GF (2006) Gluten breakdown by lactobacilli and pediococci strains isolated from sourdough. Lett Appl Microbiol 42(5):459–464

    Article  CAS  PubMed  Google Scholar 

  89. Petrova P, Petrov K, Stoyancheva G (2013) Starch-modifying enzymes of lactic acid bacteria–structures, properties, and applications. Starch-stärke 65(1–2):34–47

    Article  CAS  Google Scholar 

  90. Waglay A, Karboune S (2016) Enzymatic generation of peptides from potato proteins by selected proteases and characterization of their structural properties. Biotechnol Prog 32:420–429

    Article  CAS  PubMed  Google Scholar 

  91. Kieliszek M, Pobiega K, Piwowarek K, Kot AM (2021) Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Mol 26(7):1858

    Article  CAS  Google Scholar 

  92. Pfeiler EA, Klaenhammer TR (2007) The genomics of lactic acid bacteria. Trends Microbiol 15(12):546–553

    Article  CAS  PubMed  Google Scholar 

  93. Akbulut S, Baltaci MO, Adiguzel G, Adiguzel A (2021) Identification and biotechnological characterization of lactic acid bacteria isolated from white cheese samples. J Pure Appl Microbiol 16(4):2912–2922

    Article  Google Scholar 

  94. Adiguzel G, Fai O, Sisecioglu M, Sari B, Baltaci O, Akbulut S, Adiguzel A (2019) A novel endo-β-1, 4-xylanase from Pediococcus acidilactici GC25; purification, characterization and application in clarification of fruit juices. Int J Biol Macromol 129:571–578

    Article  CAS  PubMed  Google Scholar 

  95. Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins–a review. Bioinformation 1(8):335

    Article  PubMed  PubMed Central  Google Scholar 

  96. Petrov K, Urshev Z, Petrova P (2008) L (+)-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84. Food Microbiology 25(4):550–557

    Article  CAS  PubMed  Google Scholar 

  97. Kim JH, Sunako M, Ono H, Murooka Y, Fukusaki E, Yamashita M (2008) Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137. J Biosci Bioeng 106(5):449–459

    Article  CAS  PubMed  Google Scholar 

  98. Xu Y, Ding J, Gong S, Li M, Yang T, Zhang J (2020) Physicochemical properties of potato starch fermented by amylolytic Lactobacillus plantarum. Int J Biol Macromol 158:656–661

    Article  CAS  PubMed  Google Scholar 

  99. Blandino A, Al-Aseeri M, Pandiella S, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36(6):527–543

    Article  CAS  Google Scholar 

  100. Wasko A, Polak-Berecka M, Targonski Z (2010) A new protein of α-amylase activity from Lactococcus lactis. J Microbiol Biotechnol 20(9):1307–1313

    Article  CAS  PubMed  Google Scholar 

  101. Muyanja CMBK, Narvhus JA, Treimo J, Langsrud T (2003) Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage. Int J Food Microbiol 80(3):201–210

    Article  CAS  PubMed  Google Scholar 

  102. Turpin W, Humblot C, Guyot JP (2011) Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl Environ Microbiol 77(24):8722–8734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ghanimah M, El-Ghaish S, Salah S, Swelam S (2023) Optimal conditions for the production of exopolysaccharide by Pediococcus acidilactici and impact of the bacterium, its EPS and dextran on the quality of Kariesh cheese. Int J Dairy Technol 76(3):512–520

    Article  CAS  Google Scholar 

  104. Lebeer S, Verhoeven TLA, Francius G, Schoofs G, Lambrichts I, Dufrêne Y, De Keersmaecker SCJ (2009) Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Applied and Environ- mental Microbiology 75(11):3554–3563

    Article  CAS  Google Scholar 

  105. Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100(3):1121–1135

    Article  CAS  PubMed  Google Scholar 

  106. Tallon R, Bressollier P, Urdaci MC (2003) Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res Microbiol 154(10):705–712

    Article  CAS  PubMed  Google Scholar 

  107. Ruas-Madiedo P, De Los Reyes-Gavilán CG (2005) Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88(3):843–856

    Article  CAS  PubMed  Google Scholar 

  108. Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29(1):54–66

    Article  CAS  PubMed  Google Scholar 

  109. Imran MYM, Reehana N, Jayaraj KA, Ahamed AAP, Dhanasekaran D, Thajuddin N et al (2016) Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. Int J Biol Macromol 93:731–745

    Article  CAS  PubMed  Google Scholar 

  110. Malick A, Khodaei N, Benkerroum N, Karboune S (2017) Production of exopolysaccharides by selected Bacillus strains: optimization of media composition to maximize the yield and structural characterization. Int J Biol Macromol 102:539–549

    Article  CAS  PubMed  Google Scholar 

  111. De Vuyst L, Vancanneyt M (2007) Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol 24(2):120–127

    Article  PubMed  Google Scholar 

  112. De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16(1–3):43–56

    Article  Google Scholar 

  113. Liu A, Jia Y, Zhao L, Gao Y, Liu G, Chen Y et al (2018) Diversity of isolated lactic acid bacteria in Ya’an sourdoughs and evaluation of their exopolysaccharide production characteristics. LWT 95:17–22

    Article  CAS  Google Scholar 

  114. Gänzle M, Ripari V (2016) Composition and function of sourdough microbiota: from ecological theory to bread quality. Int J Food Microbiol 239:19–25

    Article  PubMed  Google Scholar 

  115. Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol 2:86

    Article  PubMed  PubMed Central  Google Scholar 

  116. Buron-Moles G, Chailyan A, Dolejs I, Forster J, Mikš MH (2019) Uncovering carbohydrate metabolism through a genotype-phenotype association study of 56 lactic acid bacteria genomes. Appl Microbiol Biotechnol 103(7):3135–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S (2011) Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food Bioprocess Technol 4(6):876–906

    Article  Google Scholar 

  118. Oshiro M, Zendo T, Nakayama J (2021) Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. J Biosci Bioeng 131(4):333–340

    Article  CAS  PubMed  Google Scholar 

  119. Arena MP, Russo P, Spano G, Capozzi V (2020) From microbial ecology to innovative applications in food quality improvements: the case of sourdough as a model matrix. J 3(1):9–19

    Google Scholar 

  120. Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation. Food Res Int 40(5):539–558

    Article  CAS  Google Scholar 

  121. Qiao N, Wittouck S, Mattarelli P, Zheng J, Lebeer S, Felis GE, Gänzle MG (2022) After the storm—perspectives on the taxonomy of Lactobacillaceae. JDS Communications 3(3):222–227

    Article  PubMed  PubMed Central  Google Scholar 

  122. Oberg TS, McMahon DJ, Culumber MD, McAuliffe O, Oberg CJ (2022) Invited review: review of taxonomic changes in dairy-related lactobacilli. J Dairy Sci 105(4):2750–2770

    Article  CAS  PubMed  Google Scholar 

  123. Tamrat S, Borrell JS, Biswas MK, Gashu D, Wondimu T, Vásquez-Londoño CA et al (2020) Micronutrient composition and microbial community analysis across diverse landraces of the Ethiopian orphan crop enset. Food Res Int 137:109636

    Article  CAS  PubMed  Google Scholar 

  124. Al Daccache M, Koubaa M, Maroun RG, Salameh D, Louka N, Vorobiev E (2020) Impact of the physicochemical composition and microbial diversity in apple juice fermentation process: a review. Molecules 25(16):3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Johanson A, Goel A, Olsson L, Franzén CJ (2020) Respiratory physiology of Lactococcus lactis in chemostat cultures and its effect on cellular robustness in frozen and freeze-dried starter cultures. Appl Environ Microbiol 86(6):e02785-e2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sun W, Jiang B, Zhang Y, Guo J, Zhao D, Pu Z, Bao Y (2020) Enabling the biosynthesis of malic acid in Lactococcus lactis by establishing the reductive TCA pathway and promoter engineering. Biochem Eng J 161:107645

    Article  CAS  Google Scholar 

  127. Singh D, Johnson TA, Tyagi N, Malhotra R, Behare PV, Kumar S, Tyagi AK (2023) Synergistic effect of LAB strains (Lb. fermentum and Pediococcus acidilactisci) with exogenous fibrolytic enzymes on quality and fermentation characteristics of sugarcane tops silage. Sugar Tech 25(1):141–153

    Article  CAS  Google Scholar 

  128. Säde E, Björkroth J (2019) Introduction to the genera Pediococcus, Leuconostoc, Weissella, and Carnobacterium. CRC Press, In Lactic Acid Bacteria, pp 65–85

    Google Scholar 

  129. Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP (2018) The Lactobacillus casei group: history and health related applications. Front Microbiol 9:2107

    Article  PubMed  PubMed Central  Google Scholar 

  130. Giraffa G, Chanishvili N, Widyastuti Y (2010) Importance of lactobacilli in food and feed biotechnology. Res Microbiol 161(6):480–487

    Article  PubMed  Google Scholar 

  131. Huo W, Zhang Y, Zhang L, Shen C, Chen L, Liu Q et al (2022) Effect of lactobacilli inoculation on protein and carbohydrate fractions, ensiling characteristics and bacterial community of alfalfa silage. Front Microbiol 13:1070175

    Article  PubMed  PubMed Central  Google Scholar 

  132. Coelho MC, Malcata FX, Silva CC (2022) Lactic acid bacteria in raw-milk cheeses: from starter cultures to probiotic functions. Foods 11(15):2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Patel M, Surti M, Siddiqui AJ, Alreshidi M, Ashraf SA, Adnan M (2022) Transcriptome-based characterization of interaction between fermenting microorganisms during production of bakery products. In African Fermented Food Products-New Trends. Springer, Cham, pp 143–156

    Chapter  Google Scholar 

  134. Warburton A, Silcock P, Eyres GT (2022) Impact of sourdough culture on the volatile compounds in wholemeal sourdough bread. Food Res Int 161:111885

    Article  CAS  PubMed  Google Scholar 

  135. Landis EA, Oliverio AM, McKenney EA, Nichols LM, Kfoury N, Biango-Daniels M, Wolfe BE (2021) The diversity and function of sourdough starter microbiomes. Elife 10:e61644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Primo-Martín C, Martínez-Anaya MA (2003) Influence of pentosanase and oxidases on water-extractable pentosans during a straight breadmaking process. J Food Sci 68(1):31–41

    Article  Google Scholar 

  137. Flander L, Rouau X, Morel MH, Autio K, Seppänen-Laakso T, Kruus K, Buchert J (2008) Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J Agric Food Chem 56(14):5732–5742

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dongyun Jung for the help with the genome sequencing and Pratibha Sharma for maintaining the strains.

Funding

This study was financially supported by the “Ministère de l’Agriculture, des Pêcheries, et de l’Alimentation du Québec” (MAPAQ), through the “Consortium de Recherche Innovation Transformation Alimentaire” (RITA) and by local Québec Industries (e.g., Première Moisson, Boulangerie St-Méthode, France Délices, Moulins de Soulanges, Lallemand).

Author information

Authors and Affiliations

Authors

Contributions

YD: investigation, methodology, formal analysis, data curation, and writing—the initial draft. JR and IF: methodology, validation, and writing—review and editing. SK: conceptualization, validation, supervision, project administration, and writing—review and editing. All authors reviewed and approved the submitted version.

Corresponding author

Correspondence to Salwa Karboune.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15845 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Ronholm, J., Fliss, I. et al. Screening of Lactic Acid Bacteria Strains for Potential Sourdough and Bread Applications: Enzyme Expression and Exopolysaccharide Production. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10270-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10270-y

Keywords

Navigation